Cargando…
Characteristic Gene Selection via Weighting Principal Components by Singular Values
Conventional gene selection methods based on principal component analysis (PCA) use only the first principal component (PC) of PCA or sparse PCA to select characteristic genes. These methods indeed assume that the first PC plays a dominant role in gene selection. However, in a number of cases this a...
Autores principales: | Liu, Jin-Xing, Xu, Yong, Zheng, Chun-Hou, Wang, Yi, Yang, Jing-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393749/ https://www.ncbi.nlm.nih.gov/pubmed/22808018 http://dx.doi.org/10.1371/journal.pone.0038873 |
Ejemplares similares
-
Mining Gene Expression Profiles: An Integrated Implementation of Kernel Principal Component Analysis and Singular Value Decomposition
por: Reverter, Ferran, et al.
Publicado: (2010) -
Genetic parameters and principal components analysis of breeding value for birth and weaning weight in Egyptian buffalo
por: Salem, Mohamed Mahmoud Ibrahim, et al.
Publicado: (2021) -
Image Denoising Using Sparsifying Transform Learning and Weighted Singular Values Minimization
por: Zhao, Yanwei, et al.
Publicado: (2020) -
SMSSVD: SubMatrix Selection Singular Value Decomposition
por: Henningsson, Rasmus, et al.
Publicado: (2019) -
Generalized principal component analysis
por: Vidal, René, et al.
Publicado: (2016)