Cargando…
Building a Robust A-P Axis
Since the last common ancestor of Metazoa, animals have evolved complex body plans with specialized cells and spatial organization of tissues and organs. Arguably, one of the most significant innovations during animal evolutionary history was the establishment of a bilateral plane of symmetry on whi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394115/ https://www.ncbi.nlm.nih.gov/pubmed/23204917 http://dx.doi.org/10.2174/138920212800793348 |
_version_ | 1782237823646040064 |
---|---|
author | Heimberg, Alysha McGlinn, Edwina |
author_facet | Heimberg, Alysha McGlinn, Edwina |
author_sort | Heimberg, Alysha |
collection | PubMed |
description | Since the last common ancestor of Metazoa, animals have evolved complex body plans with specialized cells and spatial organization of tissues and organs. Arguably, one of the most significant innovations during animal evolutionary history was the establishment of a bilateral plane of symmetry on which morphological features (e.g. tissues, organs, appendages, skeleton) could be given specific coordinates within the animal along the anterior-posterior (A-P) and dorsal-ventral (D-V) axes. Hox genes are a known group of eumetazoan transcription factors central to regulating A-P patterning, but less well known and under current investigation is the broader regulatory landscape incorporating these genes, including microRNA (miRNA) regulation. The degree to which evolutionarily conserved targeting of Hox genes by Hox-embedded miRNAs contributes directly to A-P patterning is under investigation, yielding contrasting information dependent on the organism and miRNA of interest. The widespread A-P patterning defects observed in recent miR-196 loss-of-function studies solidifies the importance of miRNA regulation in Hox genetic hierarchies, and elucidating the developmental and evolutionary importance of all Hox-embedded miRNAs remains a challenge for the future. |
format | Online Article Text |
id | pubmed-3394115 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Bentham Science Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-33941152012-12-01 Building a Robust A-P Axis Heimberg, Alysha McGlinn, Edwina Curr Genomics Article Since the last common ancestor of Metazoa, animals have evolved complex body plans with specialized cells and spatial organization of tissues and organs. Arguably, one of the most significant innovations during animal evolutionary history was the establishment of a bilateral plane of symmetry on which morphological features (e.g. tissues, organs, appendages, skeleton) could be given specific coordinates within the animal along the anterior-posterior (A-P) and dorsal-ventral (D-V) axes. Hox genes are a known group of eumetazoan transcription factors central to regulating A-P patterning, but less well known and under current investigation is the broader regulatory landscape incorporating these genes, including microRNA (miRNA) regulation. The degree to which evolutionarily conserved targeting of Hox genes by Hox-embedded miRNAs contributes directly to A-P patterning is under investigation, yielding contrasting information dependent on the organism and miRNA of interest. The widespread A-P patterning defects observed in recent miR-196 loss-of-function studies solidifies the importance of miRNA regulation in Hox genetic hierarchies, and elucidating the developmental and evolutionary importance of all Hox-embedded miRNAs remains a challenge for the future. Bentham Science Publishers 2012-06 2012-06 /pmc/articles/PMC3394115/ /pubmed/23204917 http://dx.doi.org/10.2174/138920212800793348 Text en ©2012 Bentham Science Publishers http://creativecommons.org/licenses/by/2.5/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Heimberg, Alysha McGlinn, Edwina Building a Robust A-P Axis |
title | Building a Robust A-P Axis |
title_full | Building a Robust A-P Axis |
title_fullStr | Building a Robust A-P Axis |
title_full_unstemmed | Building a Robust A-P Axis |
title_short | Building a Robust A-P Axis |
title_sort | building a robust a-p axis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394115/ https://www.ncbi.nlm.nih.gov/pubmed/23204917 http://dx.doi.org/10.2174/138920212800793348 |
work_keys_str_mv | AT heimbergalysha buildingarobustapaxis AT mcglinnedwina buildingarobustapaxis |