Cargando…
Learning generative models of molecular dynamics
We introduce three algorithms for learning generative models of molecular structures from molecular dynamics simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified covariates (e.g., fluctuations, distances, angles, etc). L(1 )reg-ularization is...
Autores principales: | Razavian, Narges Sharif, Kamisetty, Hetunandan, Langmead, Christopher J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394414/ https://www.ncbi.nlm.nih.gov/pubmed/22369071 http://dx.doi.org/10.1186/1471-2164-13-S1-S5 |
Ejemplares similares
-
Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information
por: Ovchinnikov, Sergey, et al.
Publicado: (2014) -
Homology modeling, molecular docking, and molecular dynamics simulations elucidated α-fetoprotein binding modes
por: Shen, Jie, et al.
Publicado: (2013) -
Fifth generation telepathology systems. Workflow analysis of the robotic dynamic telepathology Component
por: Braunhut, BL, et al.
Publicado: (2013) -
Molecular dynamics study of the archaeal aquaporin AqpM
por: Araya-Secchi, Raul, et al.
Publicado: (2011) -
Next generation models for storage and representation of microbial biological annotation
por: Quest, Daniel J, et al.
Publicado: (2010)