Cargando…
Multi-objective dynamic population shuffled frog-leaping biclustering of microarray data
BACKGROUND: Multi-objective optimization (MOO) involves optimization problems with multiple objectives. Generally, theose objectives is used to estimate very different aspects of the solutions, and these aspects are often in conflict with each other. MOO first gets a Pareto set, and then looks for b...
Autores principales: | Liu, Junwan, Li, Zhoujun, Hu, Xiaohua, Chen, Yiming, Liu, Feifei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394423/ https://www.ncbi.nlm.nih.gov/pubmed/22759615 http://dx.doi.org/10.1186/1471-2164-13-S3-S6 |
Ejemplares similares
-
Dynamic biclustering of microarray data by multi-objective immune optimization
por: Liu, Junwan, et al.
Publicado: (2011) -
Biclustering of microarray data with MOSPO based on crowding distance
por: Liu, Junwan, et al.
Publicado: (2009) -
Pattern-driven neighborhood search for biclustering of microarray data
por: Ayadi, Wassim, et al.
Publicado: (2012) -
Improved shuffled frog leaping algorithm on system reliability analysis
por: Li, Yancang, et al.
Publicado: (2019) -
Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems
por: Liu, Haorui, et al.
Publicado: (2016)