Cargando…
Discriminative application of string similarity methods to chemical and non-chemical names for biomedical abbreviation clustering
BACKGROUND: Term clustering, by measuring the string similarities between terms, is known within the natural language processing community to be an effective method for improving the quality of texts and dictionaries. However, we have observed that chemical names are difficult to cluster using strin...
Autores principales: | Yamaguchi, Atsuko, Yamamoto, Yasunori, Kim, Jin-Dong, Takagi, Toshihisa, Yonezawa, Akinori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394426/ https://www.ncbi.nlm.nih.gov/pubmed/22759617 http://dx.doi.org/10.1186/1471-2164-13-S3-S8 |
Ejemplares similares
-
Allie: a database and a search service of abbreviations and long forms
por: Yamamoto, Yasunori, et al.
Publicado: (2011) -
Building Linked Open Data towards integration of biomedical scientific literature with DBpedia
por: Yamamoto, Yasunori, et al.
Publicado: (2013) -
The Genia Event and Protein Coreference tasks of the BioNLP Shared Task 2011
por: Kim, Jin-Dong, et al.
Publicado: (2012) -
A scalable machine-learning approach to recognize chemical names within large text databases
por: Wren, Jonathan D
Publicado: (2006) -
Application of kernel functions for accurate similarity search in large chemical databases
por: Wang, Xiaohong, et al.
Publicado: (2010)