Cargando…
Hypotheses generation as supervised link discovery with automated class labeling on large-scale biomedical concept networks
Computational approaches to generate hypotheses from biomedical literature have been studied intensively in recent years. Nevertheless, it still remains a challenge to automatically discover novel, cross-silo biomedical hypotheses from large-scale literature repositories. In order to address this ch...
Autores principales: | Katukuri, Jayasimha Reddy, Xie, Ying, Raghavan, Vijay V, Gupta, Ashish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394427/ https://www.ncbi.nlm.nih.gov/pubmed/22759614 http://dx.doi.org/10.1186/1471-2164-13-S3-S5 |
Ejemplares similares
-
Weakly supervised learning of biomedical information extraction from curated data
por: Jain, Suvir, et al.
Publicado: (2016) -
Representation of research hypotheses
por: Soldatova, Larisa N, et al.
Publicado: (2011) -
Comparison of concept recognizers for building the Open Biomedical Annotator
por: Shah, Nigam H, et al.
Publicado: (2009) -
Automated extraction and semantic analysis of mutation impacts from the biomedical literature
por: Naderi, Nona, et al.
Publicado: (2012) -
Automating generation of textual class definitions from OWL to English
por: Stevens, Robert, et al.
Publicado: (2011)