Cargando…
Integration of Clinical and Gene Expression Data Has a Synergetic Effect on Predicting Breast Cancer Outcome
Breast cancer outcome can be predicted using models derived from gene expression data or clinical data. Only a few studies have created a single prediction model using both gene expression and clinical data. These studies often remain inconclusive regarding an obtained improvement in prediction perf...
Autores principales: | van Vliet, Martin H., Horlings, Hugo M., van de Vijver, Marc J., Reinders, Marcel J. T., Wessels, Lodewyk F. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394805/ https://www.ncbi.nlm.nih.gov/pubmed/22808140 http://dx.doi.org/10.1371/journal.pone.0040358 |
Ejemplares similares
-
Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability
por: van Vliet, Martin H, et al.
Publicado: (2008) -
Module-Based Outcome Prediction Using Breast Cancer Compendia
por: van Vliet, Martin H., et al.
Publicado: (2007) -
SIRAC: Supervised Identification of Regions of Aberration in aCGH datasets
por: Lai, Carmen, et al.
Publicado: (2007) -
Knowledge driven decomposition of tumor expression profiles
por: van Vliet, Martin H, et al.
Publicado: (2009) -
A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the Proliferation, Immune response and RNA splicing modules in breast cancer
por: Reyal, Fabien, et al.
Publicado: (2008)