Cargando…

Overcoming Species Boundaries in Peptide Identification with Bayesian Information Criterion-driven Error-tolerant Peptide Search (BICEPS)

Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Sta...

Descripción completa

Detalles Bibliográficos
Autores principales: Renard, Bernhard Y., Xu, Buote, Kirchner, Marc, Zickmann, Franziska, Winter, Dominic, Korten, Simone, Brattig, Norbert W., Tzur, Amit, Hamprecht, Fred A., Steen, Hanno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Biochemistry and Molecular Biology 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394943/
https://www.ncbi.nlm.nih.gov/pubmed/22493179
http://dx.doi.org/10.1074/mcp.M111.014167
_version_ 1782237909592571904
author Renard, Bernhard Y.
Xu, Buote
Kirchner, Marc
Zickmann, Franziska
Winter, Dominic
Korten, Simone
Brattig, Norbert W.
Tzur, Amit
Hamprecht, Fred A.
Steen, Hanno
author_facet Renard, Bernhard Y.
Xu, Buote
Kirchner, Marc
Zickmann, Franziska
Winter, Dominic
Korten, Simone
Brattig, Norbert W.
Tzur, Amit
Hamprecht, Fred A.
Steen, Hanno
author_sort Renard, Bernhard Y.
collection PubMed
description Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Standard database search algorithms fail to identify peptides that are not exactly contained in a protein database. De novo searches are generally hindered by their restricted reliability, and current error-tolerant search strategies are limited by global, heuristic tradeoffs between database and spectral information. We propose a Bayesian information criterion-driven error-tolerant peptide search (BICEPS) and offer an open source implementation based on this statistical criterion to automatically balance the information of each single spectrum and the database, while limiting the run time. We show that BICEPS performs as well as current database search algorithms when such algorithms are applied to sequenced organisms, whereas BICEPS only uses a remotely related organism database. For instance, we use a chicken instead of a human database corresponding to an evolutionary distance of more than 300 million years (International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716). We demonstrate the successful application to cross-species proteomics with a 33% increase in the number of identified proteins for a filarial nematode sample of Litomosoides sigmodontis.
format Online
Article
Text
id pubmed-3394943
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher The American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-33949432012-07-16 Overcoming Species Boundaries in Peptide Identification with Bayesian Information Criterion-driven Error-tolerant Peptide Search (BICEPS) Renard, Bernhard Y. Xu, Buote Kirchner, Marc Zickmann, Franziska Winter, Dominic Korten, Simone Brattig, Norbert W. Tzur, Amit Hamprecht, Fred A. Steen, Hanno Mol Cell Proteomics Technological Innovation Resources Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Standard database search algorithms fail to identify peptides that are not exactly contained in a protein database. De novo searches are generally hindered by their restricted reliability, and current error-tolerant search strategies are limited by global, heuristic tradeoffs between database and spectral information. We propose a Bayesian information criterion-driven error-tolerant peptide search (BICEPS) and offer an open source implementation based on this statistical criterion to automatically balance the information of each single spectrum and the database, while limiting the run time. We show that BICEPS performs as well as current database search algorithms when such algorithms are applied to sequenced organisms, whereas BICEPS only uses a remotely related organism database. For instance, we use a chicken instead of a human database corresponding to an evolutionary distance of more than 300 million years (International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716). We demonstrate the successful application to cross-species proteomics with a 33% increase in the number of identified proteins for a filarial nematode sample of Litomosoides sigmodontis. The American Society for Biochemistry and Molecular Biology 2012-07 2012-04-06 /pmc/articles/PMC3394943/ /pubmed/22493179 http://dx.doi.org/10.1074/mcp.M111.014167 Text en © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles
spellingShingle Technological Innovation Resources
Renard, Bernhard Y.
Xu, Buote
Kirchner, Marc
Zickmann, Franziska
Winter, Dominic
Korten, Simone
Brattig, Norbert W.
Tzur, Amit
Hamprecht, Fred A.
Steen, Hanno
Overcoming Species Boundaries in Peptide Identification with Bayesian Information Criterion-driven Error-tolerant Peptide Search (BICEPS)
title Overcoming Species Boundaries in Peptide Identification with Bayesian Information Criterion-driven Error-tolerant Peptide Search (BICEPS)
title_full Overcoming Species Boundaries in Peptide Identification with Bayesian Information Criterion-driven Error-tolerant Peptide Search (BICEPS)
title_fullStr Overcoming Species Boundaries in Peptide Identification with Bayesian Information Criterion-driven Error-tolerant Peptide Search (BICEPS)
title_full_unstemmed Overcoming Species Boundaries in Peptide Identification with Bayesian Information Criterion-driven Error-tolerant Peptide Search (BICEPS)
title_short Overcoming Species Boundaries in Peptide Identification with Bayesian Information Criterion-driven Error-tolerant Peptide Search (BICEPS)
title_sort overcoming species boundaries in peptide identification with bayesian information criterion-driven error-tolerant peptide search (biceps)
topic Technological Innovation Resources
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394943/
https://www.ncbi.nlm.nih.gov/pubmed/22493179
http://dx.doi.org/10.1074/mcp.M111.014167
work_keys_str_mv AT renardbernhardy overcomingspeciesboundariesinpeptideidentificationwithbayesianinformationcriteriondrivenerrortolerantpeptidesearchbiceps
AT xubuote overcomingspeciesboundariesinpeptideidentificationwithbayesianinformationcriteriondrivenerrortolerantpeptidesearchbiceps
AT kirchnermarc overcomingspeciesboundariesinpeptideidentificationwithbayesianinformationcriteriondrivenerrortolerantpeptidesearchbiceps
AT zickmannfranziska overcomingspeciesboundariesinpeptideidentificationwithbayesianinformationcriteriondrivenerrortolerantpeptidesearchbiceps
AT winterdominic overcomingspeciesboundariesinpeptideidentificationwithbayesianinformationcriteriondrivenerrortolerantpeptidesearchbiceps
AT kortensimone overcomingspeciesboundariesinpeptideidentificationwithbayesianinformationcriteriondrivenerrortolerantpeptidesearchbiceps
AT brattignorbertw overcomingspeciesboundariesinpeptideidentificationwithbayesianinformationcriteriondrivenerrortolerantpeptidesearchbiceps
AT tzuramit overcomingspeciesboundariesinpeptideidentificationwithbayesianinformationcriteriondrivenerrortolerantpeptidesearchbiceps
AT hamprechtfreda overcomingspeciesboundariesinpeptideidentificationwithbayesianinformationcriteriondrivenerrortolerantpeptidesearchbiceps
AT steenhanno overcomingspeciesboundariesinpeptideidentificationwithbayesianinformationcriteriondrivenerrortolerantpeptidesearchbiceps