Cargando…
Extracellular Matrix Proteins Modulate Antimigratory and Apoptotic Effects of Doxorubicin
Anticancer drug resistance is a multifactorial process that includes acquired and de novo drug resistances. Acquired resistance develops during treatment, while de novo resistance is the primary way for tumor cells to escape chemotherapy. Tumor microenvironment has been recently shown to be one of t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395309/ https://www.ncbi.nlm.nih.gov/pubmed/22811904 http://dx.doi.org/10.1155/2012/268681 |
_version_ | 1782237965603307520 |
---|---|
author | Said, Georges Guilbert, Marie Morjani, Hamid Garnotel, Roselyne Jeannesson, Pierre El Btaouri, Hassan |
author_facet | Said, Georges Guilbert, Marie Morjani, Hamid Garnotel, Roselyne Jeannesson, Pierre El Btaouri, Hassan |
author_sort | Said, Georges |
collection | PubMed |
description | Anticancer drug resistance is a multifactorial process that includes acquired and de novo drug resistances. Acquired resistance develops during treatment, while de novo resistance is the primary way for tumor cells to escape chemotherapy. Tumor microenvironment has been recently shown to be one of the important factors contributing to de novo resistance and called environment-mediated drug resistance (EMDR). Two forms of EMDR have been described: soluble factor-mediated drug resistance (SFM-DR) and cell adhesion-mediated drug resistance (CAM-DR). Anthracyclines, among the most potent chemotherapeutic agents, are widely used in clinics against hematopoietic and solid tumors. Their main mechanism of action relies on the inhibition of topoisomerase I and/or II and the induction of apoptosis. Beyond this well-known antitumor activity, it has been recently demonstrated that anthracyclines may display potent anti-invasive effects when used at subtoxic concentrations. In this paper, we will describe two particular modes of EMDR by which microenvironment may influence tumor-cell response to one of these anthracyclines, doxorubicin. The first one considers the influence of type I collagen on the antimigratory effect of doxorubicin (CAM-DR). The second considers the protection of tumor cells by thrombospondin-I against doxorubicin-induced apoptosis (SFM-DR). |
format | Online Article Text |
id | pubmed-3395309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-33953092012-07-18 Extracellular Matrix Proteins Modulate Antimigratory and Apoptotic Effects of Doxorubicin Said, Georges Guilbert, Marie Morjani, Hamid Garnotel, Roselyne Jeannesson, Pierre El Btaouri, Hassan Chemother Res Pract Review Article Anticancer drug resistance is a multifactorial process that includes acquired and de novo drug resistances. Acquired resistance develops during treatment, while de novo resistance is the primary way for tumor cells to escape chemotherapy. Tumor microenvironment has been recently shown to be one of the important factors contributing to de novo resistance and called environment-mediated drug resistance (EMDR). Two forms of EMDR have been described: soluble factor-mediated drug resistance (SFM-DR) and cell adhesion-mediated drug resistance (CAM-DR). Anthracyclines, among the most potent chemotherapeutic agents, are widely used in clinics against hematopoietic and solid tumors. Their main mechanism of action relies on the inhibition of topoisomerase I and/or II and the induction of apoptosis. Beyond this well-known antitumor activity, it has been recently demonstrated that anthracyclines may display potent anti-invasive effects when used at subtoxic concentrations. In this paper, we will describe two particular modes of EMDR by which microenvironment may influence tumor-cell response to one of these anthracyclines, doxorubicin. The first one considers the influence of type I collagen on the antimigratory effect of doxorubicin (CAM-DR). The second considers the protection of tumor cells by thrombospondin-I against doxorubicin-induced apoptosis (SFM-DR). Hindawi Publishing Corporation 2012 2012-07-01 /pmc/articles/PMC3395309/ /pubmed/22811904 http://dx.doi.org/10.1155/2012/268681 Text en Copyright © 2012 Georges Said et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Said, Georges Guilbert, Marie Morjani, Hamid Garnotel, Roselyne Jeannesson, Pierre El Btaouri, Hassan Extracellular Matrix Proteins Modulate Antimigratory and Apoptotic Effects of Doxorubicin |
title | Extracellular Matrix Proteins Modulate Antimigratory and Apoptotic Effects of Doxorubicin |
title_full | Extracellular Matrix Proteins Modulate Antimigratory and Apoptotic Effects of Doxorubicin |
title_fullStr | Extracellular Matrix Proteins Modulate Antimigratory and Apoptotic Effects of Doxorubicin |
title_full_unstemmed | Extracellular Matrix Proteins Modulate Antimigratory and Apoptotic Effects of Doxorubicin |
title_short | Extracellular Matrix Proteins Modulate Antimigratory and Apoptotic Effects of Doxorubicin |
title_sort | extracellular matrix proteins modulate antimigratory and apoptotic effects of doxorubicin |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395309/ https://www.ncbi.nlm.nih.gov/pubmed/22811904 http://dx.doi.org/10.1155/2012/268681 |
work_keys_str_mv | AT saidgeorges extracellularmatrixproteinsmodulateantimigratoryandapoptoticeffectsofdoxorubicin AT guilbertmarie extracellularmatrixproteinsmodulateantimigratoryandapoptoticeffectsofdoxorubicin AT morjanihamid extracellularmatrixproteinsmodulateantimigratoryandapoptoticeffectsofdoxorubicin AT garnotelroselyne extracellularmatrixproteinsmodulateantimigratoryandapoptoticeffectsofdoxorubicin AT jeannessonpierre extracellularmatrixproteinsmodulateantimigratoryandapoptoticeffectsofdoxorubicin AT elbtaourihassan extracellularmatrixproteinsmodulateantimigratoryandapoptoticeffectsofdoxorubicin |