Cargando…

Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization

In this report, optical scattering coefficient and phase retardation quantitatively estimated from polarization-sensitive OCT (PSOCT) were used for ovarian tissue characterization. A total of 33 ex vivo ovaries (normal: n = 26, malignant: n = 7) obtained from 18 patients were investigated. A specifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yi, Wang, Tianheng, Wang, Xiaohong, Sanders, Melinda, Brewer, Molly, Zhu, Quing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395480/
https://www.ncbi.nlm.nih.gov/pubmed/22808427
http://dx.doi.org/10.1364/BOE.3.001548
Descripción
Sumario:In this report, optical scattering coefficient and phase retardation quantitatively estimated from polarization-sensitive OCT (PSOCT) were used for ovarian tissue characterization. A total of 33 ex vivo ovaries (normal: n = 26, malignant: n = 7) obtained from 18 patients were investigated. A specificity of 100% and a sensitivity of 86% were achieved by using estimated scattering coefficient alone; and a specificity of 100% and a sensitivity of 43% were obtained by using phase retardation alone. However, a superior specificity of 100% and sensitivity of 100% were achieved if these two parameters were used together for classifying normal and malignant ovaries. Quantitative measurement of collagen content obtained from Sirius red histology sections shows that it correlates with estimated scattering coefficient and phase retardation. Our initial results demonstrate that quantitative analysis of PSOCT could be a potentially valuable method for distinguishing normal from malignant ovarian tissues during minimally invasive surgery and help guide surgical intervention.