Cargando…
Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems
BACKGROUND: Falls can cause trauma, disability and death among older people. Ambulatory accelerometer devices are currently capable of detecting falls in a controlled environment. However, research suggests that most current approaches can tend to have insufficient sensitivity and specificity in non...
Autores principales: | Yuwono, Mitchell, Moulton, Bruce D, Su, Steven W, Celler, Branko G, Nguyen, Hung T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395835/ https://www.ncbi.nlm.nih.gov/pubmed/22336100 http://dx.doi.org/10.1186/1475-925X-11-9 |
Ejemplares similares
-
Unsupervised Assessment of Balance and Falls Risk Using a Smartphone and Machine Learning
por: Greene, Barry R., et al.
Publicado: (2021) -
Machine and Deep Learning for Tuberculosis Detection on Chest X-Rays: Systematic Literature Review
por: Hansun, Seng, et al.
Publicado: (2023) -
Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection
por: Iqbal, Talha, et al.
Publicado: (2022) -
Modelling and regulating of cardio-respiratory response for the enhancement of interval training
por: Haddad, Azzam, et al.
Publicado: (2014) -
Unsupervised machine learning for detection of faulty beam position monitors
por: Fol, Elena, et al.
Publicado: (2019)