Cargando…
Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data
BACKGROUND: Dimensionality reduction (DR) enables the construction of a lower dimensional space (embedding) from a higher dimensional feature space while preserving object-class discriminability. However several popular DR approaches suffer from sensitivity to choice of parameters and/or presence of...
Autores principales: | Viswanath, Satish, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395843/ https://www.ncbi.nlm.nih.gov/pubmed/22316103 http://dx.doi.org/10.1186/1471-2105-13-26 |
Ejemplares similares
-
Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: concepts, workflow, and use-cases
por: Viswanath, Satish E., et al.
Publicado: (2017) -
Predicting Classifier Performance with Limited Training Data: Applications to Computer-Aided Diagnosis in Breast and Prostate Cancer
por: Basavanhally, Ajay, et al.
Publicado: (2015) -
A robust data scaling algorithm to improve classification accuracies in biomedical data
por: Cao, Xi Hang, et al.
Publicado: (2016) -
Discriminative Scale Learning (DiScrn): Applications to Prostate Cancer Detection from MRI and Needle Biopsies
por: Wang, Haibo, et al.
Publicado: (2017) -
Co-Registration of ex vivo Surgical Histopathology and in vivo T2 weighted MRI of the Prostate via multi-scale spectral embedding representation
por: Li, Lin, et al.
Publicado: (2017)