Cargando…
Robust adhesion of flower-like few-layer graphene nanoclusters
Nanostructured surface possessing ultrahigh adhesion like “gecko foot” or “rose petal” can offer more opportunities for bionic application. We grow flower-like few-layer graphene on silicon nanocone arrays to form graphene nanoclusters, showing robust adhesion. Their contact angle (CA) is 164° with...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397321/ https://www.ncbi.nlm.nih.gov/pubmed/22803004 http://dx.doi.org/10.1038/srep00511 |
Sumario: | Nanostructured surface possessing ultrahigh adhesion like “gecko foot” or “rose petal” can offer more opportunities for bionic application. We grow flower-like few-layer graphene on silicon nanocone arrays to form graphene nanoclusters, showing robust adhesion. Their contact angle (CA) is 164° with a hysteresis CA of 155° and adhesive force for a 5 μL water droplet is about 254 μN that is far larger than present reported results. We bring experimental evidences that this great adhesion depends on large-area plentiful edges of graphene nanosheets tuned by conical nanostructure and intrinsic wetting features of graphene. Such new hierarchical few-layer graphene nanostructure provides a feasible strategy to understand the ultra-adhesive mechanism of the “gecko effect” or “rose effect” and enhance the wettability of graphene for many practical applications. |
---|