Cargando…

Robust adhesion of flower-like few-layer graphene nanoclusters

Nanostructured surface possessing ultrahigh adhesion like “gecko foot” or “rose petal” can offer more opportunities for bionic application. We grow flower-like few-layer graphene on silicon nanocone arrays to form graphene nanoclusters, showing robust adhesion. Their contact angle (CA) is 164° with...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Shibing, Li, Lin, Sun, Wangning, Xia, Xiaoxiang, Han, Dong, Li, Junjie, Gu, Changzhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397321/
https://www.ncbi.nlm.nih.gov/pubmed/22803004
http://dx.doi.org/10.1038/srep00511
Descripción
Sumario:Nanostructured surface possessing ultrahigh adhesion like “gecko foot” or “rose petal” can offer more opportunities for bionic application. We grow flower-like few-layer graphene on silicon nanocone arrays to form graphene nanoclusters, showing robust adhesion. Their contact angle (CA) is 164° with a hysteresis CA of 155° and adhesive force for a 5 μL water droplet is about 254 μN that is far larger than present reported results. We bring experimental evidences that this great adhesion depends on large-area plentiful edges of graphene nanosheets tuned by conical nanostructure and intrinsic wetting features of graphene. Such new hierarchical few-layer graphene nanostructure provides a feasible strategy to understand the ultra-adhesive mechanism of the “gecko effect” or “rose effect” and enhance the wettability of graphene for many practical applications.