Cargando…

Role of Microglia in Oxidative Toxicity Associated with Encephalomycarditis Virus Infection in the Central Nervous System

The single-stranded RNA encephalomyocarditis virus (EMCV) can replicate in the central nervous system (CNS) and lead to prominent brain lesions in the stratum pyramidale hippocampus and the stratum granulosum cerebelli. Activated microglia cells infected by EMCV produce a massive burst of reactive o...

Descripción completa

Detalles Bibliográficos
Autores principales: Ano, Yasuhisa, Sakudo, Akikazu, Onodera, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397531/
https://www.ncbi.nlm.nih.gov/pubmed/22837699
http://dx.doi.org/10.3390/ijms13067365
Descripción
Sumario:The single-stranded RNA encephalomyocarditis virus (EMCV) can replicate in the central nervous system (CNS) and lead to prominent brain lesions in the stratum pyramidale hippocampus and the stratum granulosum cerebelli. Activated microglia cells infected by EMCV produce a massive burst of reactive oxygen species (ROS) via NADPH oxidase 2 (NOX2) activation, leading to neuronal death. Balancing this effect is mechanisms by which ROS are eliminated from the CNS. Cellular prion protein (PrP(C)) plays an important antioxidant role and contributes to cellular defense against EMCV infection. This review introduces recent knowledge on brain injury induced by EMCV infection via ROS generation as well as the involvement of various mediators and regulators in the pathogenesis.