Cargando…

Physalin F Induces Cell Apoptosis in Human Renal Carcinoma Cells by Targeting NF-kappaB and Generating Reactive Oxygen Species

BACKGROUND: The aim of this study was to determine the molecular mechanisms of physalin F, an effective purified extract of Physalis angulata L. (Solanacae), in renal carcinoma A498 cells. METHODOLOGY/PRINCIPAL FINDINGS: Physalin F was observed to significantly induce cytotoxicity of three human ren...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Szu-Ying, Leu, Yann-Lii, Chang, Ya-Ling, Wu, Tian-Shung, Kuo, Ping-Chung, Liao, Yu-Ren, Teng, Che-Ming, Pan, Shiow-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398016/
https://www.ncbi.nlm.nih.gov/pubmed/22815798
http://dx.doi.org/10.1371/journal.pone.0040727
Descripción
Sumario:BACKGROUND: The aim of this study was to determine the molecular mechanisms of physalin F, an effective purified extract of Physalis angulata L. (Solanacae), in renal carcinoma A498 cells. METHODOLOGY/PRINCIPAL FINDINGS: Physalin F was observed to significantly induce cytotoxicity of three human renal carcinoma A498, ACHN, and UO-31 cells in a concentration-dependent manner; this was especially potent in A498 cells. The physalin F-induced cell apoptosis of A498 cells was characterized by MTT assay, nuclear DNA fragmentation and chromatin condensation. Using flow cytometry analysis, physalin F induced A498 cell apoptosis as demonstrated by the accumulation of the sub-G1 phase in a concentration- and time-dependent manner. Moreover, physalin F-mediated accumulation of reactive oxygen species (ROS) caused Bcl-2 family proteins, Bcl-2, and Bcl-xL degradation, which led to disruption of mitochondrial membrane potential and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-3 and caspase-9 activity, which led to poly(ADP-ribose) polymerase cleavage. However, the antioxidant N-acetyl-(L)-cysteine (NAC) and glutathione (GSH) resulted in the inhibition of these events and reversed physalin F-induced cell apoptosis. In addition, physalin F suppressed NF-κB activity and nuclear translocation of p65 and p50, which was reversed by NAC and GSH. CONCLUSION: Physalin F induced cell apoptosis through the ROS-mediated mitochondrial pathway and suppressed NF-κB activation in human renal cancer A498 cells. Thus, physalin F appears to be a promising anti-cancer agent worthy of further clinical development.