Cargando…
Prefrontal and Striatal Activity Related to Values of Objects and Locations
The value of an object acquired by a particular action often determines the motivation to produce that action. Previous studies found neural signals related to the values of different objects or goods in the orbitofrontal cortex, while the values of outcomes expected from different actions are broad...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398315/ https://www.ncbi.nlm.nih.gov/pubmed/22822390 http://dx.doi.org/10.3389/fnins.2012.00108 |
Sumario: | The value of an object acquired by a particular action often determines the motivation to produce that action. Previous studies found neural signals related to the values of different objects or goods in the orbitofrontal cortex, while the values of outcomes expected from different actions are broadly represented in multiple brain areas implicated in movement planning. However, how the brain combines the values associated with various objects and the information about their locations is not known. In this study, we tested whether the neurons in the dorsolateral prefrontal cortex (DLPFC) and striatum in rhesus monkeys might contribute to translating the value signals between multiple frames of reference. Monkeys were trained to perform an oculomotor intertemporal choice in which the color of a saccade target and the number of its surrounding dots signaled the magnitude of reward and its delay, respectively. In both DLPFC and striatum, temporally discounted values (DVs) associated with specific target colors and locations were encoded by partially overlapping populations of neurons. In the DLPFC, the information about reward delays and DVs of rewards available from specific target locations emerged earlier than the corresponding signals for target colors. Similar results were reproduced by a simple network model built to compute DVs of rewards in different locations. Therefore, DLPFC might play an important role in estimating the values of different actions by combining the previously learned values of objects and their present locations. |
---|