Cargando…
Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression
This study aims to identify key miRNAs in circulation, which predict ongoing beta-cell destruction and regeneration in children with newly diagnosed Type 1 Diabetes (T1D). We compared expression level of sera miRNAs from new onset T1D children and age-matched healthy controls and related the miRNAs...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398606/ https://www.ncbi.nlm.nih.gov/pubmed/22829805 http://dx.doi.org/10.1155/2012/896362 |
Sumario: | This study aims to identify key miRNAs in circulation, which predict ongoing beta-cell destruction and regeneration in children with newly diagnosed Type 1 Diabetes (T1D). We compared expression level of sera miRNAs from new onset T1D children and age-matched healthy controls and related the miRNAs expression levels to beta-cell function and glycaemic control. Global miRNA sequencing analyses were performed on sera pools from two T1D cohorts (n = 275 and 129, resp.) and one control group (n = 151). We identified twelve upregulated human miRNAs in T1D patients (miR-152, miR-30a-5p, miR-181a, miR-24, miR-148a, miR-210, miR-27a, miR-29a, miR-26a, miR-27b, miR-25, miR-200a); several of these miRNAs were linked to apoptosis and beta-cell networks. Furthermore, we identified miR-25 as negatively associated with residual beta-cell function (est.: −0.12, P = 0.0037), and positively associated with glycaemic control (HbA1c) (est.: 0.11, P = 0.0035) 3 months after onset. In conclusion this study demonstrates that miR-25 might be a “tissue-specific” miRNA for glycaemic control 3 months after diagnosis in new onset T1D children and therefore supports the role of circulating miRNAs as predictive biomarkers for tissue physiopathology and potential intervention targets. |
---|