Cargando…
Identification of Protein Interacting Partners Using Tandem Affinity Purification
A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399501/ https://www.ncbi.nlm.nih.gov/pubmed/22395237 http://dx.doi.org/10.3791/3643 |
_version_ | 1782238414720991232 |
---|---|
author | Bailey, Dalan Urena, Luis Thorne, Lucy Goodfellow, Ian |
author_facet | Bailey, Dalan Urena, Luis Thorne, Lucy Goodfellow, Ian |
author_sort | Bailey, Dalan |
collection | PubMed |
description | A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification(1). Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast(2,3) but more recently has been adapted to use in mammalian cells(4-8). As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E(9,10).The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation(10). The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence(8). To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter. Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous proteins apparently specific to the eIF4E pull-down (when compared to control cell lines expressing the TAP tag alone). The identities of the proteins were obtained by excision of the bands from 1D SDS-PAGE and subsequent tandem mass spectrometry. The identified components included the known eIF4E binding proteins eIF4G and 4EBP-1. In addition, other components of the eIF4F complex, of which eIF4E is a component were identified, namely eIF4A and Poly-A binding protein. The ability to identify not only known direct binding partners as well as secondary interacting proteins, further highlights the utility of this approach in the characterization of proteins of unknown function. |
format | Online Article Text |
id | pubmed-3399501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | MyJove Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-33995012012-07-18 Identification of Protein Interacting Partners Using Tandem Affinity Purification Bailey, Dalan Urena, Luis Thorne, Lucy Goodfellow, Ian J Vis Exp Molecular Biology A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification(1). Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast(2,3) but more recently has been adapted to use in mammalian cells(4-8). As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E(9,10).The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation(10). The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence(8). To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter. Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous proteins apparently specific to the eIF4E pull-down (when compared to control cell lines expressing the TAP tag alone). The identities of the proteins were obtained by excision of the bands from 1D SDS-PAGE and subsequent tandem mass spectrometry. The identified components included the known eIF4E binding proteins eIF4G and 4EBP-1. In addition, other components of the eIF4F complex, of which eIF4E is a component were identified, namely eIF4A and Poly-A binding protein. The ability to identify not only known direct binding partners as well as secondary interacting proteins, further highlights the utility of this approach in the characterization of proteins of unknown function. MyJove Corporation 2012-02-25 /pmc/articles/PMC3399501/ /pubmed/22395237 http://dx.doi.org/10.3791/3643 Text en Copyright © 2012, Journal of Visualized Experiments http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Molecular Biology Bailey, Dalan Urena, Luis Thorne, Lucy Goodfellow, Ian Identification of Protein Interacting Partners Using Tandem Affinity Purification |
title | Identification of Protein Interacting Partners Using Tandem Affinity Purification |
title_full | Identification of Protein Interacting Partners Using Tandem Affinity Purification |
title_fullStr | Identification of Protein Interacting Partners Using Tandem Affinity Purification |
title_full_unstemmed | Identification of Protein Interacting Partners Using Tandem Affinity Purification |
title_short | Identification of Protein Interacting Partners Using Tandem Affinity Purification |
title_sort | identification of protein interacting partners using tandem affinity purification |
topic | Molecular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399501/ https://www.ncbi.nlm.nih.gov/pubmed/22395237 http://dx.doi.org/10.3791/3643 |
work_keys_str_mv | AT baileydalan identificationofproteininteractingpartnersusingtandemaffinitypurification AT urenaluis identificationofproteininteractingpartnersusingtandemaffinitypurification AT thornelucy identificationofproteininteractingpartnersusingtandemaffinitypurification AT goodfellowian identificationofproteininteractingpartnersusingtandemaffinitypurification |