Cargando…
Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials
Aerosol techniques were used to synthesize spherical and monodisperse silver nanoparticles for plasmonic materials. The particles were generated with an evaporation–condensation technique followed by size selection and sintering with a differential mobility analyzer and a tube furnace, respectively....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400035/ https://www.ncbi.nlm.nih.gov/pubmed/22844206 http://dx.doi.org/10.1007/s11051-012-0870-0 |
_version_ | 1782238450672467968 |
---|---|
author | Harra, Juha Mäkitalo, Jouni Siikanen, Roope Virkki, Matti Genty, Goëry Kobayashi, Takayoshi Kauranen, Martti Mäkelä, Jyrki M. |
author_facet | Harra, Juha Mäkitalo, Jouni Siikanen, Roope Virkki, Matti Genty, Goëry Kobayashi, Takayoshi Kauranen, Martti Mäkelä, Jyrki M. |
author_sort | Harra, Juha |
collection | PubMed |
description | Aerosol techniques were used to synthesize spherical and monodisperse silver nanoparticles for plasmonic materials. The particles were generated with an evaporation–condensation technique followed by size selection and sintering with a differential mobility analyzer and a tube furnace, respectively. Finally, the nanoparticles were collected on a glass substrate with an electrostatic precipitator. The particle size distributions were measured with a scanning mobility particle sizer and verified with a transmission electron microscope. A spectrophotometer was used to measure the optical extinction spectra of the prepared samples, which contained particles with diameters of approximately 50, 90 and 130 nm. By controlling the particle size, the dipolar peak of the localized surface plasmon resonance was tuned between wavelengths of 398 and 448 nm. In addition, quadrupolar resonances were observed at shorter wavelengths as predicted by the simplified theoretical model used to characterize the measured spectra. |
format | Online Article Text |
id | pubmed-3400035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-34000352012-07-25 Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials Harra, Juha Mäkitalo, Jouni Siikanen, Roope Virkki, Matti Genty, Goëry Kobayashi, Takayoshi Kauranen, Martti Mäkelä, Jyrki M. J Nanopart Res Research Paper Aerosol techniques were used to synthesize spherical and monodisperse silver nanoparticles for plasmonic materials. The particles were generated with an evaporation–condensation technique followed by size selection and sintering with a differential mobility analyzer and a tube furnace, respectively. Finally, the nanoparticles were collected on a glass substrate with an electrostatic precipitator. The particle size distributions were measured with a scanning mobility particle sizer and verified with a transmission electron microscope. A spectrophotometer was used to measure the optical extinction spectra of the prepared samples, which contained particles with diameters of approximately 50, 90 and 130 nm. By controlling the particle size, the dipolar peak of the localized surface plasmon resonance was tuned between wavelengths of 398 and 448 nm. In addition, quadrupolar resonances were observed at shorter wavelengths as predicted by the simplified theoretical model used to characterize the measured spectra. Springer Netherlands 2012-06-03 2012 /pmc/articles/PMC3400035/ /pubmed/22844206 http://dx.doi.org/10.1007/s11051-012-0870-0 Text en © The Author(s) 2012 https://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Research Paper Harra, Juha Mäkitalo, Jouni Siikanen, Roope Virkki, Matti Genty, Goëry Kobayashi, Takayoshi Kauranen, Martti Mäkelä, Jyrki M. Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials |
title | Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials |
title_full | Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials |
title_fullStr | Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials |
title_full_unstemmed | Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials |
title_short | Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials |
title_sort | size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400035/ https://www.ncbi.nlm.nih.gov/pubmed/22844206 http://dx.doi.org/10.1007/s11051-012-0870-0 |
work_keys_str_mv | AT harrajuha sizecontrolledaerosolsynthesisofsilvernanoparticlesforplasmonicmaterials AT makitalojouni sizecontrolledaerosolsynthesisofsilvernanoparticlesforplasmonicmaterials AT siikanenroope sizecontrolledaerosolsynthesisofsilvernanoparticlesforplasmonicmaterials AT virkkimatti sizecontrolledaerosolsynthesisofsilvernanoparticlesforplasmonicmaterials AT gentygoery sizecontrolledaerosolsynthesisofsilvernanoparticlesforplasmonicmaterials AT kobayashitakayoshi sizecontrolledaerosolsynthesisofsilvernanoparticlesforplasmonicmaterials AT kauranenmartti sizecontrolledaerosolsynthesisofsilvernanoparticlesforplasmonicmaterials AT makelajyrkim sizecontrolledaerosolsynthesisofsilvernanoparticlesforplasmonicmaterials |