Cargando…
POOL server: machine learning application for functional site prediction in proteins
Summary: We present an automated web server for partial order optimum likelihood (POOL), a machine learning application that combines computed electrostatic and geometric information for high-performance prediction of catalytic residues from 3D structures. Input features consist of THEMATICS electro...
Autores principales: | Somarowthu, Srinivas, Ondrechen, Mary Jo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400966/ https://www.ncbi.nlm.nih.gov/pubmed/22661648 http://dx.doi.org/10.1093/bioinformatics/bts321 |
Ejemplares similares
-
Protein function annotation with Structurally Aligned Local Sites of Activity (SALSAs)
por: Wang, Zhouxi, et al.
Publicado: (2013) -
ANCHOR: web server for predicting protein binding regions in disordered proteins
por: Dosztányi, Zsuzsanna, et al.
Publicado: (2009) -
Evolutionary Trace Annotation Server: automated enzyme function prediction in protein structures using 3D templates
por: Matthew Ward, R., et al.
Publicado: (2009) -
TMFoldWeb: a web server for predicting transmembrane protein fold class
por: Kozma, Dániel, et al.
Publicado: (2015) -
omiXcore: a web server for prediction of protein interactions with large RNA
por: Armaos, Alexandros, et al.
Publicado: (2017)