Cargando…
Long-Term Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of Retinopathy
Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401102/ https://www.ncbi.nlm.nih.gov/pubmed/22911805 http://dx.doi.org/10.1371/journal.pone.0041511 |
_version_ | 1782238564957814784 |
---|---|
author | Haurigot, Virginia Villacampa, Pilar Ribera, Albert Bosch, Assumpcio Ramos, David Ruberte, Jesus Bosch, Fatima |
author_facet | Haurigot, Virginia Villacampa, Pilar Ribera, Albert Bosch, Assumpcio Ramos, David Ruberte, Jesus Bosch, Fatima |
author_sort | Haurigot, Virginia |
collection | PubMed |
description | Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders. |
format | Online Article Text |
id | pubmed-3401102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34011022012-07-30 Long-Term Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of Retinopathy Haurigot, Virginia Villacampa, Pilar Ribera, Albert Bosch, Assumpcio Ramos, David Ruberte, Jesus Bosch, Fatima PLoS One Research Article Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders. Public Library of Science 2012-07-20 /pmc/articles/PMC3401102/ /pubmed/22911805 http://dx.doi.org/10.1371/journal.pone.0041511 Text en Haurigot et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Haurigot, Virginia Villacampa, Pilar Ribera, Albert Bosch, Assumpcio Ramos, David Ruberte, Jesus Bosch, Fatima Long-Term Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of Retinopathy |
title | Long-Term Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of Retinopathy |
title_full | Long-Term Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of Retinopathy |
title_fullStr | Long-Term Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of Retinopathy |
title_full_unstemmed | Long-Term Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of Retinopathy |
title_short | Long-Term Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of Retinopathy |
title_sort | long-term retinal pedf overexpression prevents neovascularization in a murine adult model of retinopathy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401102/ https://www.ncbi.nlm.nih.gov/pubmed/22911805 http://dx.doi.org/10.1371/journal.pone.0041511 |
work_keys_str_mv | AT haurigotvirginia longtermretinalpedfoverexpressionpreventsneovascularizationinamurineadultmodelofretinopathy AT villacampapilar longtermretinalpedfoverexpressionpreventsneovascularizationinamurineadultmodelofretinopathy AT riberaalbert longtermretinalpedfoverexpressionpreventsneovascularizationinamurineadultmodelofretinopathy AT boschassumpcio longtermretinalpedfoverexpressionpreventsneovascularizationinamurineadultmodelofretinopathy AT ramosdavid longtermretinalpedfoverexpressionpreventsneovascularizationinamurineadultmodelofretinopathy AT rubertejesus longtermretinalpedfoverexpressionpreventsneovascularizationinamurineadultmodelofretinopathy AT boschfatima longtermretinalpedfoverexpressionpreventsneovascularizationinamurineadultmodelofretinopathy |