Cargando…
Dispersal Polymorphism and the Speed of Biological Invasions
The speed at which biological range expansions occur has important consequences for the conservation management of species experiencing climate change and for invasion by exotic organisms. Rates of dispersal and population growth are known to affect the speed of invasion, but little is known about t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401290/ https://www.ncbi.nlm.nih.gov/pubmed/22911701 http://dx.doi.org/10.1371/journal.pone.0040496 |
_version_ | 1782238589697916928 |
---|---|
author | Elliott, Elizabeth C. Cornell, Stephen J. |
author_facet | Elliott, Elizabeth C. Cornell, Stephen J. |
author_sort | Elliott, Elizabeth C. |
collection | PubMed |
description | The speed at which biological range expansions occur has important consequences for the conservation management of species experiencing climate change and for invasion by exotic organisms. Rates of dispersal and population growth are known to affect the speed of invasion, but little is known about the effect of having a community of dispersal phenotypes on the rate of range expansion. We use reaction-diffusion equations to model the invasion of a species with two dispersal phenotypes into a previously unoccupied landscape. These phenotypes differ in both their dispersal rate and population growth rate. We find that the presence of both phenotypes can result in faster range expansions than if only a single phenotype were present in the landscape. For biologically realistic parameters, the invasion can occur up to twice as fast as a result of this polymorphism. This has implications for predicting the speed of biological invasions, suggesting that speeds cannot just be predicted from looking at a single phenotype and that the full community of phenotypes needs to be taken into consideration. |
format | Online Article Text |
id | pubmed-3401290 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34012902012-07-30 Dispersal Polymorphism and the Speed of Biological Invasions Elliott, Elizabeth C. Cornell, Stephen J. PLoS One Research Article The speed at which biological range expansions occur has important consequences for the conservation management of species experiencing climate change and for invasion by exotic organisms. Rates of dispersal and population growth are known to affect the speed of invasion, but little is known about the effect of having a community of dispersal phenotypes on the rate of range expansion. We use reaction-diffusion equations to model the invasion of a species with two dispersal phenotypes into a previously unoccupied landscape. These phenotypes differ in both their dispersal rate and population growth rate. We find that the presence of both phenotypes can result in faster range expansions than if only a single phenotype were present in the landscape. For biologically realistic parameters, the invasion can occur up to twice as fast as a result of this polymorphism. This has implications for predicting the speed of biological invasions, suggesting that speeds cannot just be predicted from looking at a single phenotype and that the full community of phenotypes needs to be taken into consideration. Public Library of Science 2012-07-20 /pmc/articles/PMC3401290/ /pubmed/22911701 http://dx.doi.org/10.1371/journal.pone.0040496 Text en Elliott, Cornell. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Elliott, Elizabeth C. Cornell, Stephen J. Dispersal Polymorphism and the Speed of Biological Invasions |
title | Dispersal Polymorphism and the Speed of Biological Invasions |
title_full | Dispersal Polymorphism and the Speed of Biological Invasions |
title_fullStr | Dispersal Polymorphism and the Speed of Biological Invasions |
title_full_unstemmed | Dispersal Polymorphism and the Speed of Biological Invasions |
title_short | Dispersal Polymorphism and the Speed of Biological Invasions |
title_sort | dispersal polymorphism and the speed of biological invasions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401290/ https://www.ncbi.nlm.nih.gov/pubmed/22911701 http://dx.doi.org/10.1371/journal.pone.0040496 |
work_keys_str_mv | AT elliottelizabethc dispersalpolymorphismandthespeedofbiologicalinvasions AT cornellstephenj dispersalpolymorphismandthespeedofbiologicalinvasions |