Cargando…
Acinetobacter calcoaceticus–baumannii Complex Strains Induce Caspase-Dependent and Caspase-Independent Death of Human Epithelial Cells
We investigated interactions of human isolates of Acinetobacter calcoaceticus–baumannii complex strains with epithelial cells. The results showed that bacterial contact with the cells as well as adhesion and invasion were required for induction of cytotoxicity. The infected cells revealed hallmarks...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401494/ https://www.ncbi.nlm.nih.gov/pubmed/22684803 http://dx.doi.org/10.1007/s00284-012-0159-7 |
_version_ | 1782238610741788672 |
---|---|
author | Krzymińska, Sylwia Frąckowiak, Hanna Kaznowski, Adam |
author_facet | Krzymińska, Sylwia Frąckowiak, Hanna Kaznowski, Adam |
author_sort | Krzymińska, Sylwia |
collection | PubMed |
description | We investigated interactions of human isolates of Acinetobacter calcoaceticus–baumannii complex strains with epithelial cells. The results showed that bacterial contact with the cells as well as adhesion and invasion were required for induction of cytotoxicity. The infected cells revealed hallmarks of apoptosis characterized by cell shrinking, condensed chromatin, and internucleosomal fragmentation of nuclear DNA. The highest apoptotic index was observed for 4 of 10 A. calcoaceticus and 4 of 7 A. baumannii strains. Moreover, we observed oncotic changes: cellular swelling and blebbing, noncondensed chromatin, and the absence of DNA fragmentation. The highest oncotic index was observed in cells infected with 6 A. calcoaceticus isolates. Cell-contact cytotoxicity and cell death were not inhibited by the pan-caspase inhibitor z-VAD-fmk. Induction of oncosis was correlated with increased invasive ability of the strains. We demonstrated that the mitochondria of infected cells undergo structural and functional alterations which can lead to cell death. Infected apoptotic and oncotic cells exhibited loss of mitochondrial transmembrane potential (ΔΨ(m)). Bacterial infection caused generation of nitric oxide and reactive oxygen species. This study indicated that Acinetobacter spp. induced strain-dependent distinct types of epithelial cell death that may contribute to the pathogenesis of bacterial infection. |
format | Online Article Text |
id | pubmed-3401494 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-34014942012-07-23 Acinetobacter calcoaceticus–baumannii Complex Strains Induce Caspase-Dependent and Caspase-Independent Death of Human Epithelial Cells Krzymińska, Sylwia Frąckowiak, Hanna Kaznowski, Adam Curr Microbiol Article We investigated interactions of human isolates of Acinetobacter calcoaceticus–baumannii complex strains with epithelial cells. The results showed that bacterial contact with the cells as well as adhesion and invasion were required for induction of cytotoxicity. The infected cells revealed hallmarks of apoptosis characterized by cell shrinking, condensed chromatin, and internucleosomal fragmentation of nuclear DNA. The highest apoptotic index was observed for 4 of 10 A. calcoaceticus and 4 of 7 A. baumannii strains. Moreover, we observed oncotic changes: cellular swelling and blebbing, noncondensed chromatin, and the absence of DNA fragmentation. The highest oncotic index was observed in cells infected with 6 A. calcoaceticus isolates. Cell-contact cytotoxicity and cell death were not inhibited by the pan-caspase inhibitor z-VAD-fmk. Induction of oncosis was correlated with increased invasive ability of the strains. We demonstrated that the mitochondria of infected cells undergo structural and functional alterations which can lead to cell death. Infected apoptotic and oncotic cells exhibited loss of mitochondrial transmembrane potential (ΔΨ(m)). Bacterial infection caused generation of nitric oxide and reactive oxygen species. This study indicated that Acinetobacter spp. induced strain-dependent distinct types of epithelial cell death that may contribute to the pathogenesis of bacterial infection. Springer-Verlag 2012-06-09 2012 /pmc/articles/PMC3401494/ /pubmed/22684803 http://dx.doi.org/10.1007/s00284-012-0159-7 Text en © The Author(s) 2012 https://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Article Krzymińska, Sylwia Frąckowiak, Hanna Kaznowski, Adam Acinetobacter calcoaceticus–baumannii Complex Strains Induce Caspase-Dependent and Caspase-Independent Death of Human Epithelial Cells |
title | Acinetobacter calcoaceticus–baumannii Complex Strains Induce Caspase-Dependent and Caspase-Independent Death of Human Epithelial Cells |
title_full | Acinetobacter calcoaceticus–baumannii Complex Strains Induce Caspase-Dependent and Caspase-Independent Death of Human Epithelial Cells |
title_fullStr | Acinetobacter calcoaceticus–baumannii Complex Strains Induce Caspase-Dependent and Caspase-Independent Death of Human Epithelial Cells |
title_full_unstemmed | Acinetobacter calcoaceticus–baumannii Complex Strains Induce Caspase-Dependent and Caspase-Independent Death of Human Epithelial Cells |
title_short | Acinetobacter calcoaceticus–baumannii Complex Strains Induce Caspase-Dependent and Caspase-Independent Death of Human Epithelial Cells |
title_sort | acinetobacter calcoaceticus–baumannii complex strains induce caspase-dependent and caspase-independent death of human epithelial cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401494/ https://www.ncbi.nlm.nih.gov/pubmed/22684803 http://dx.doi.org/10.1007/s00284-012-0159-7 |
work_keys_str_mv | AT krzyminskasylwia acinetobactercalcoaceticusbaumanniicomplexstrainsinducecaspasedependentandcaspaseindependentdeathofhumanepithelialcells AT frackowiakhanna acinetobactercalcoaceticusbaumanniicomplexstrainsinducecaspasedependentandcaspaseindependentdeathofhumanepithelialcells AT kaznowskiadam acinetobactercalcoaceticusbaumanniicomplexstrainsinducecaspasedependentandcaspaseindependentdeathofhumanepithelialcells |