Cargando…

New CD1d agonists: Synthesis and biological activity of 6″-triazole-substituted α-galactosyl ceramides

Huisgen [3+2] dipolar cycloaddition of 6″-azido-6″-deoxy-α-galactosyl ceramide 11 with a range of alkynes (or a benzyne precursor) yielded a series of triazole-containing α-galactosyl ceramide (α-GalCer) analogues in high yield. These α-GalCer analogues and the precursor azide 11 were tested for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Jervis, Peter J., Graham, Lisa M., Foster, Erin L., Cox, Liam R., Porcelli, Steven A., Besra, Gurdyal S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401990/
https://www.ncbi.nlm.nih.gov/pubmed/22652050
http://dx.doi.org/10.1016/j.bmcl.2012.05.009
Descripción
Sumario:Huisgen [3+2] dipolar cycloaddition of 6″-azido-6″-deoxy-α-galactosyl ceramide 11 with a range of alkynes (or a benzyne precursor) yielded a series of triazole-containing α-galactosyl ceramide (α-GalCer) analogues in high yield. These α-GalCer analogues and the precursor azide 11 were tested for their ability to activate iNKT cells and stimulate IL-2 cytokine secretion in vitro, and IFN-γ and IL-4 cytokine secretion in vivo. Some of these analogues, specifically 11, 12b, 12f and 13, were more potent IL-2 stimulators than the prototypical CD1d agonist, α-GalCer 1. In terms of any cytokine bias, most of the triazole-containing analogues exhibited a small Th2 cytokine-biasing response relative to that shown by α-GalCer 1. In contrast, the cycloaddition precursor, namely azide 11, provided a small Th1 cytokine-biasing response.