Cargando…

NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment

Transcriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional v...

Descripción completa

Detalles Bibliográficos
Autores principales: Reynolds, Nicola, Latos, Paulina, Hynes-Allen, Antony, Loos, Remco, Leaford, Donna, O'Shaughnessy, Aoife, Mosaku, Olukunbi, Signolet, Jason, Brennecke, Philip, Kalkan, Tüzer, Costello, Ita, Humphreys, Peter, Mansfield, William, Nakagawa, Kentaro, Strouboulis, John, Behrens, Axel, Bertone, Paul, Hendrich, Brian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402183/
https://www.ncbi.nlm.nih.gov/pubmed/22560079
http://dx.doi.org/10.1016/j.stem.2012.02.020
_version_ 1782238712229265408
author Reynolds, Nicola
Latos, Paulina
Hynes-Allen, Antony
Loos, Remco
Leaford, Donna
O'Shaughnessy, Aoife
Mosaku, Olukunbi
Signolet, Jason
Brennecke, Philip
Kalkan, Tüzer
Costello, Ita
Humphreys, Peter
Mansfield, William
Nakagawa, Kentaro
Strouboulis, John
Behrens, Axel
Bertone, Paul
Hendrich, Brian
author_facet Reynolds, Nicola
Latos, Paulina
Hynes-Allen, Antony
Loos, Remco
Leaford, Donna
O'Shaughnessy, Aoife
Mosaku, Olukunbi
Signolet, Jason
Brennecke, Philip
Kalkan, Tüzer
Costello, Ita
Humphreys, Peter
Mansfield, William
Nakagawa, Kentaro
Strouboulis, John
Behrens, Axel
Bertone, Paul
Hendrich, Brian
author_sort Reynolds, Nicola
collection PubMed
description Transcriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional variability in yeast and to be important for mammalian ESC lineage commitment. Here we show that the Nucleosome Remodeling and Deacetylation (NuRD) complex, which is required for ESC lineage commitment, modulates both transcriptional heterogeneity and the dynamic range of a set of pluripotency genes in ESCs. In self-renewing conditions, the influence of NuRD at these genes is balanced by the opposing action of self-renewal factors. Upon loss of self-renewal factors, the action of NuRD is sufficient to silence transcription of these pluripotency genes, allowing cells to exit self-renewal. We propose that modulation of transcription levels by NuRD is key to maintaining the differentiation responsiveness of pluripotent cells.
format Online
Article
Text
id pubmed-3402183
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-34021832012-07-24 NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment Reynolds, Nicola Latos, Paulina Hynes-Allen, Antony Loos, Remco Leaford, Donna O'Shaughnessy, Aoife Mosaku, Olukunbi Signolet, Jason Brennecke, Philip Kalkan, Tüzer Costello, Ita Humphreys, Peter Mansfield, William Nakagawa, Kentaro Strouboulis, John Behrens, Axel Bertone, Paul Hendrich, Brian Cell Stem Cell Article Transcriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional variability in yeast and to be important for mammalian ESC lineage commitment. Here we show that the Nucleosome Remodeling and Deacetylation (NuRD) complex, which is required for ESC lineage commitment, modulates both transcriptional heterogeneity and the dynamic range of a set of pluripotency genes in ESCs. In self-renewing conditions, the influence of NuRD at these genes is balanced by the opposing action of self-renewal factors. Upon loss of self-renewal factors, the action of NuRD is sufficient to silence transcription of these pluripotency genes, allowing cells to exit self-renewal. We propose that modulation of transcription levels by NuRD is key to maintaining the differentiation responsiveness of pluripotent cells. Cell Press 2012-05-04 /pmc/articles/PMC3402183/ /pubmed/22560079 http://dx.doi.org/10.1016/j.stem.2012.02.020 Text en © 2012 ELL & Excerpta Medica. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Article
Reynolds, Nicola
Latos, Paulina
Hynes-Allen, Antony
Loos, Remco
Leaford, Donna
O'Shaughnessy, Aoife
Mosaku, Olukunbi
Signolet, Jason
Brennecke, Philip
Kalkan, Tüzer
Costello, Ita
Humphreys, Peter
Mansfield, William
Nakagawa, Kentaro
Strouboulis, John
Behrens, Axel
Bertone, Paul
Hendrich, Brian
NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment
title NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment
title_full NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment
title_fullStr NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment
title_full_unstemmed NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment
title_short NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment
title_sort nurd suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402183/
https://www.ncbi.nlm.nih.gov/pubmed/22560079
http://dx.doi.org/10.1016/j.stem.2012.02.020
work_keys_str_mv AT reynoldsnicola nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT latospaulina nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT hynesallenantony nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT loosremco nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT leaforddonna nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT oshaughnessyaoife nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT mosakuolukunbi nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT signoletjason nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT brenneckephilip nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT kalkantuzer nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT costelloita nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT humphreyspeter nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT mansfieldwilliam nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT nakagawakentaro nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT strouboulisjohn nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT behrensaxel nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT bertonepaul nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment
AT hendrichbrian nurdsuppressespluripotencygeneexpressiontopromotetranscriptionalheterogeneityandlineagecommitment