Cargando…
Transgenic Control of Mitochondrial Fission Induces Mitochondrial Uncoupling and Relieves Diabetic Oxidative Stress
Mitochondria are the essential eukaryotic organelles that produce most cellular energy. The energy production and supply by mitochondria appear closely associated with the continuous shape change of mitochondria mediated by fission and fusion, as evidenced not only by the hereditary diseases caused...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402299/ https://www.ncbi.nlm.nih.gov/pubmed/22698920 http://dx.doi.org/10.2337/db11-1640 |
_version_ | 1782238726996361216 |
---|---|
author | Galloway, Chad A. Lee, Hakjoo Nejjar, Souad Jhun, Bong Sook Yu, Tianzheng Hsu, Wei Yoon, Yisang |
author_facet | Galloway, Chad A. Lee, Hakjoo Nejjar, Souad Jhun, Bong Sook Yu, Tianzheng Hsu, Wei Yoon, Yisang |
author_sort | Galloway, Chad A. |
collection | PubMed |
description | Mitochondria are the essential eukaryotic organelles that produce most cellular energy. The energy production and supply by mitochondria appear closely associated with the continuous shape change of mitochondria mediated by fission and fusion, as evidenced not only by the hereditary diseases caused by mutations in fission/fusion genes but also by aberrant mitochondrial morphologies associated with numerous pathologic insults. However, how morphological change of mitochondria is linked to their energy-producing activity is poorly understood. In this study, we found that perturbation of mitochondrial fission induces a unique mitochondrial uncoupling phenomenon through a large-scale fluctuation of a mitochondrial inner membrane potential. Furthermore, by genetically controlling mitochondrial fission and thereby inducing mild proton leak in mice, we were able to relieve these mice from oxidative stress in a hyperglycemic model. These findings provide mechanistic insight into how mitochondrial fission participates in regulating mitochondrial activity. In addition, these results suggest a potential application of mitochondrial fission to control mitochondrial reactive oxygen species production and oxidative stress in many human diseases. |
format | Online Article Text |
id | pubmed-3402299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-34022992013-08-01 Transgenic Control of Mitochondrial Fission Induces Mitochondrial Uncoupling and Relieves Diabetic Oxidative Stress Galloway, Chad A. Lee, Hakjoo Nejjar, Souad Jhun, Bong Sook Yu, Tianzheng Hsu, Wei Yoon, Yisang Diabetes Complications Mitochondria are the essential eukaryotic organelles that produce most cellular energy. The energy production and supply by mitochondria appear closely associated with the continuous shape change of mitochondria mediated by fission and fusion, as evidenced not only by the hereditary diseases caused by mutations in fission/fusion genes but also by aberrant mitochondrial morphologies associated with numerous pathologic insults. However, how morphological change of mitochondria is linked to their energy-producing activity is poorly understood. In this study, we found that perturbation of mitochondrial fission induces a unique mitochondrial uncoupling phenomenon through a large-scale fluctuation of a mitochondrial inner membrane potential. Furthermore, by genetically controlling mitochondrial fission and thereby inducing mild proton leak in mice, we were able to relieve these mice from oxidative stress in a hyperglycemic model. These findings provide mechanistic insight into how mitochondrial fission participates in regulating mitochondrial activity. In addition, these results suggest a potential application of mitochondrial fission to control mitochondrial reactive oxygen species production and oxidative stress in many human diseases. American Diabetes Association 2012-08 2012-07-17 /pmc/articles/PMC3402299/ /pubmed/22698920 http://dx.doi.org/10.2337/db11-1640 Text en © 2012 by the American Diabetes Association. https://creativecommons.org/licenses/by-nc-nd/3.0/Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ (https://creativecommons.org/licenses/by-nc-nd/3.0/) for details. |
spellingShingle | Complications Galloway, Chad A. Lee, Hakjoo Nejjar, Souad Jhun, Bong Sook Yu, Tianzheng Hsu, Wei Yoon, Yisang Transgenic Control of Mitochondrial Fission Induces Mitochondrial Uncoupling and Relieves Diabetic Oxidative Stress |
title | Transgenic Control of Mitochondrial Fission Induces Mitochondrial Uncoupling and Relieves Diabetic Oxidative Stress |
title_full | Transgenic Control of Mitochondrial Fission Induces Mitochondrial Uncoupling and Relieves Diabetic Oxidative Stress |
title_fullStr | Transgenic Control of Mitochondrial Fission Induces Mitochondrial Uncoupling and Relieves Diabetic Oxidative Stress |
title_full_unstemmed | Transgenic Control of Mitochondrial Fission Induces Mitochondrial Uncoupling and Relieves Diabetic Oxidative Stress |
title_short | Transgenic Control of Mitochondrial Fission Induces Mitochondrial Uncoupling and Relieves Diabetic Oxidative Stress |
title_sort | transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress |
topic | Complications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402299/ https://www.ncbi.nlm.nih.gov/pubmed/22698920 http://dx.doi.org/10.2337/db11-1640 |
work_keys_str_mv | AT gallowaychada transgeniccontrolofmitochondrialfissioninducesmitochondrialuncouplingandrelievesdiabeticoxidativestress AT leehakjoo transgeniccontrolofmitochondrialfissioninducesmitochondrialuncouplingandrelievesdiabeticoxidativestress AT nejjarsouad transgeniccontrolofmitochondrialfissioninducesmitochondrialuncouplingandrelievesdiabeticoxidativestress AT jhunbongsook transgeniccontrolofmitochondrialfissioninducesmitochondrialuncouplingandrelievesdiabeticoxidativestress AT yutianzheng transgeniccontrolofmitochondrialfissioninducesmitochondrialuncouplingandrelievesdiabeticoxidativestress AT hsuwei transgeniccontrolofmitochondrialfissioninducesmitochondrialuncouplingandrelievesdiabeticoxidativestress AT yoonyisang transgeniccontrolofmitochondrialfissioninducesmitochondrialuncouplingandrelievesdiabeticoxidativestress |