Cargando…

Mg(2+) in the Major Groove Modulates B-DNA Structure and Dynamics

This study investigates the effect of Mg(2+) bound to the DNA major groove on DNA structure and dynamics. The analysis of a comprehensive dataset of B-DNA crystallographic structures shows that divalent cations are preferentially located in the DNA major groove where they interact with successive ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Guéroult, Marc, Boittin, Olivier, Mauffret, Oliver, Etchebest, Catherine, Hartmann, Brigitte
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402463/
https://www.ncbi.nlm.nih.gov/pubmed/22844516
http://dx.doi.org/10.1371/journal.pone.0041704
Descripción
Sumario:This study investigates the effect of Mg(2+) bound to the DNA major groove on DNA structure and dynamics. The analysis of a comprehensive dataset of B-DNA crystallographic structures shows that divalent cations are preferentially located in the DNA major groove where they interact with successive bases of (A/G)pG and the phosphate group of 5′-CpA or TpG. Based on this knowledge, molecular dynamics simulations were carried out on a DNA oligomer without or with Mg(2+) close to an ApG step. These simulations showed that the hydrated Mg(2+) forms a stable intra-strand cross-link between the two purines in solution. ApG generates an electrostatic potential in the major groove that is particularly attractive for cations; its intrinsic conformation is well-adapted to the formation of water-mediated hydrogen bonds with Mg(2+). The binding of Mg(2+) modulates the behavior of the 5′-neighboring step by increasing the BII (ε-ζ>0°) population of its phosphate group. Additional electrostatic interactions between the 5′-phosphate group and Mg(2+) strengthen both the DNA-cation binding and the BII character of the 5′-step. Cation binding in the major groove may therefore locally influence the DNA conformational landscape, suggesting a possible avenue for better understanding how strong DNA distortions can be stabilized in protein-DNA complexes.