Cargando…

Experimental Evidence for the Interplay of Exogenous and Endogenous Factors on the Movement Ecology of a Migrating Songbird

Movement patterns during songbird migration remain poorly understood despite their expected fitness consequences in terms of survival, energetic condition and timing of migration that will carry over to subsequent phases of the annual cycle. We took an experimental approach to test hypotheses regard...

Descripción completa

Detalles Bibliográficos
Autores principales: Cohen, Emily B., Moore, Frank R., Fischer, Richard A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402469/
https://www.ncbi.nlm.nih.gov/pubmed/22844528
http://dx.doi.org/10.1371/journal.pone.0041818
Descripción
Sumario:Movement patterns during songbird migration remain poorly understood despite their expected fitness consequences in terms of survival, energetic condition and timing of migration that will carry over to subsequent phases of the annual cycle. We took an experimental approach to test hypotheses regarding the influence of habitat, energetic condition, time of season and sex on the hour-by-hour, local movement decisions of a songbird during spring stopover. To simulate arrival of nocturnal migrants at unfamiliar stopover sites, we translocated and continuously tracked migratory red-eyed vireos (Vireo olivaceus) throughout spring stopover with and without energetic reserves that were released in two replicates of three forested habitat types. Migrants moved the most upon release, during which time they selected habitat characterized by greater food abundance and higher foraging attack rates. Presumably under pressure to replenish fuel stores necessary to continue migration in a timely fashion, migrants released in poorer energetic condition moved faster and further than migrants in better condition and the same pattern was true for migrants released late in spring relative to those released earlier. However, a migrant's energetic condition had less influence on their behavior when they were in poor quality habitat. Movement did not differ between sexes. Our study illustrates the importance of quickly finding suitable habitat at each stopover site, especially for energetically constrained migrants later in the season. If an initial period prior to foraging were necessary at each stop along a migrant's journey, non-foraging periods would cumulatively result in a significant energetic and time cost to migration. However, we suggest behavior during stopover is not solely a function of underlying resource distributions but is a complex response to a combination of endogenous and exogenous factors.