Cargando…
Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403536/ http://dx.doi.org/10.1186/1471-2202-13-S1-P2 |
_version_ | 1782238901728968704 |
---|---|
author | Alemi-Neissi, Alireza Baldassi, Carlo Braunstein, Alfredo Pagnani, Andrea Zecchina, Riccardo Zoccolan, Davide |
author_facet | Alemi-Neissi, Alireza Baldassi, Carlo Braunstein, Alfredo Pagnani, Andrea Zecchina, Riccardo Zoccolan, Davide |
author_sort | Alemi-Neissi, Alireza |
collection | PubMed |
description | |
format | Online Article Text |
id | pubmed-3403536 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34035362012-07-27 Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition Alemi-Neissi, Alireza Baldassi, Carlo Braunstein, Alfredo Pagnani, Andrea Zecchina, Riccardo Zoccolan, Davide BMC Neurosci Poster Presentation BioMed Central 2012-07-16 /pmc/articles/PMC3403536/ http://dx.doi.org/10.1186/1471-2202-13-S1-P2 Text en Copyright ©2012 Alemi-Neissi et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Poster Presentation Alemi-Neissi, Alireza Baldassi, Carlo Braunstein, Alfredo Pagnani, Andrea Zecchina, Riccardo Zoccolan, Davide Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title | Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_full | Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_fullStr | Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_full_unstemmed | Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_short | Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_sort | information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
topic | Poster Presentation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403536/ http://dx.doi.org/10.1186/1471-2202-13-S1-P2 |
work_keys_str_mv | AT alemineissialireza informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT baldassicarlo informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT braunsteinalfredo informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT pagnaniandrea informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT zecchinariccardo informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT zoccolandavide informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition |