Cargando…
Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition
Autores principales: | Alemi-Neissi, Alireza, Baldassi, Carlo, Braunstein, Alfredo, Pagnani, Andrea, Zecchina, Riccardo, Zoccolan, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403536/ http://dx.doi.org/10.1186/1471-2202-13-S1-P2 |
Ejemplares similares
-
Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons
por: Baldassi, Carlo, et al.
Publicado: (2013) -
Object similarity affects the perceptual strategy underlying invariant visual object recognition in rats
por: Rosselli, Federica B., et al.
Publicado: (2015) -
Invariant visual object recognition and shape processing in rats
por: Zoccolan, Davide
Publicado: (2015) -
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks
por: Alemi, Alireza, et al.
Publicado: (2015) -
Efficient supervised learning in networks with binary synapses
por: Baldassi, Carlo, et al.
Publicado: (2007)