Cargando…
The Molecule Cloud - compact visualization of large collections of molecules
BACKGROUND: Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403880/ https://www.ncbi.nlm.nih.gov/pubmed/22769057 http://dx.doi.org/10.1186/1758-2946-4-12 |
_version_ | 1782238936238653440 |
---|---|
author | Ertl, Peter Rohde, Bernhard |
author_facet | Ertl, Peter Rohde, Bernhard |
author_sort | Ertl, Peter |
collection | PubMed |
description | BACKGROUND: Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. SUMMARY: A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach “Molecule Cloud”. The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. CONCLUSIONS: Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large data sets, including PubChem, ChEMBL and ZINC databases using the Molecule Cloud diagrams are provided. |
format | Online Article Text |
id | pubmed-3403880 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34038802012-07-25 The Molecule Cloud - compact visualization of large collections of molecules Ertl, Peter Rohde, Bernhard J Cheminform Methodology BACKGROUND: Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. SUMMARY: A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach “Molecule Cloud”. The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. CONCLUSIONS: Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large data sets, including PubChem, ChEMBL and ZINC databases using the Molecule Cloud diagrams are provided. BioMed Central 2012-07-06 /pmc/articles/PMC3403880/ /pubmed/22769057 http://dx.doi.org/10.1186/1758-2946-4-12 Text en Copyright ©2012 Ertl and Rohde; licensee Chemistry Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Ertl, Peter Rohde, Bernhard The Molecule Cloud - compact visualization of large collections of molecules |
title | The Molecule Cloud - compact visualization of large collections of molecules |
title_full | The Molecule Cloud - compact visualization of large collections of molecules |
title_fullStr | The Molecule Cloud - compact visualization of large collections of molecules |
title_full_unstemmed | The Molecule Cloud - compact visualization of large collections of molecules |
title_short | The Molecule Cloud - compact visualization of large collections of molecules |
title_sort | molecule cloud - compact visualization of large collections of molecules |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403880/ https://www.ncbi.nlm.nih.gov/pubmed/22769057 http://dx.doi.org/10.1186/1758-2946-4-12 |
work_keys_str_mv | AT ertlpeter themoleculecloudcompactvisualizationoflargecollectionsofmolecules AT rohdebernhard themoleculecloudcompactvisualizationoflargecollectionsofmolecules AT ertlpeter moleculecloudcompactvisualizationoflargecollectionsofmolecules AT rohdebernhard moleculecloudcompactvisualizationoflargecollectionsofmolecules |