Cargando…

Lysolipid containing liposomes for transendothelial drug delivery

BACKGROUND: Designing efficient 'vectors', to deliver therapeutics across endothelial barriers, in a controlled manner, remains one of the key goals of drug development. Recently, transcytosis of liposome encapsulated fluorescence marker calcein across a tight cell barrier was studied. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Koklic, Tilen, trancar, Janez
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403881/
https://www.ncbi.nlm.nih.gov/pubmed/22490670
http://dx.doi.org/10.1186/1756-0500-5-179
_version_ 1782238936457805824
author Koklic, Tilen
trancar, Janez
author_facet Koklic, Tilen
trancar, Janez
author_sort Koklic, Tilen
collection PubMed
description BACKGROUND: Designing efficient 'vectors', to deliver therapeutics across endothelial barriers, in a controlled manner, remains one of the key goals of drug development. Recently, transcytosis of liposome encapsulated fluorescence marker calcein across a tight cell barrier was studied. The most efficient liposomes were found to be liposomes containing sufficient amount of alkyl phospholipid (APL) perifosine. APLs have similar structure as lysophosphatidyl choline (LPC), since APLs were synthesized as metabolically stable analogues of LPC, which increases endothelial permeability directly by inducing endothelial cell contraction, resulting in formation of gaps between endothelial cells. Since one of the unique properties of lysolipid, containing liposomal formulations is dynamic equilibrium of lysolipids, which are distributed among liposomes, micelles, and free form, such liposomes represent a reservoir of free lysolipids. On the other hand lysolipid containing liposomes also represent a reservoir of an encapsulated hydrophilic drug. PRESENTATION OF THE HYPOTHESIS: We hypothesize that free lysolipids, with highest concentration in vicinity of drug carrying liposomes, compromise endothelial integrity, primarily where concentrations of liposomes is the highest, in a similar manner as LPC, by formation of gaps between endothelial cells. Liposome encapsulated drug, which leaks from liposomes, due to liposome destabilization, caused by lysolipid depletion, can therefore be efficiently transported across the locally compromised endothelial barrier. TESTING THE HYPOTHESIS: This hypothesis could be verified: by measuring binding of perifosine and other lysolipids to albumin and to lysophospholipid receptor (LPL-R) group; formation of stress fibers and subsequent cell contraction; activation of RhoA, and endothelial barrier dysfunction; by a synthesis of other LPC analogues with high critical micellar concentration and measuring their effect on transendothelial permeability in presence and absence of albumin. IMPLICATIONS OF THE HYPOTHESIS: We propose that lysolipid containing liposomal formulations might be used as nonspecific transendothelial transport vector, since leakage of liposome encapsulated active drug occurs simultaneously with the release of the lysolipids. The concentration of the active drug is therefore expected to be the highest at the site of compromised endothelial barrier. By appropriate choice of the lysolipids an endothelial barrier would stay open only for a short time. Use of such liposomes would potentially maximize the delivery of the drug while limiting the passage of toxic substances and pathogens across the endothelial barrier. Combining lysolipid containing liposomes with superparamagnetic iron oxide nanoparticles or a targeting ligand might be required to efficiently localize drug delivery to a disease affected tissue and to avoid endothelial disruption over the entire body.
format Online
Article
Text
id pubmed-3403881
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34038812012-07-25 Lysolipid containing liposomes for transendothelial drug delivery Koklic, Tilen trancar, Janez BMC Res Notes Hypothesis BACKGROUND: Designing efficient 'vectors', to deliver therapeutics across endothelial barriers, in a controlled manner, remains one of the key goals of drug development. Recently, transcytosis of liposome encapsulated fluorescence marker calcein across a tight cell barrier was studied. The most efficient liposomes were found to be liposomes containing sufficient amount of alkyl phospholipid (APL) perifosine. APLs have similar structure as lysophosphatidyl choline (LPC), since APLs were synthesized as metabolically stable analogues of LPC, which increases endothelial permeability directly by inducing endothelial cell contraction, resulting in formation of gaps between endothelial cells. Since one of the unique properties of lysolipid, containing liposomal formulations is dynamic equilibrium of lysolipids, which are distributed among liposomes, micelles, and free form, such liposomes represent a reservoir of free lysolipids. On the other hand lysolipid containing liposomes also represent a reservoir of an encapsulated hydrophilic drug. PRESENTATION OF THE HYPOTHESIS: We hypothesize that free lysolipids, with highest concentration in vicinity of drug carrying liposomes, compromise endothelial integrity, primarily where concentrations of liposomes is the highest, in a similar manner as LPC, by formation of gaps between endothelial cells. Liposome encapsulated drug, which leaks from liposomes, due to liposome destabilization, caused by lysolipid depletion, can therefore be efficiently transported across the locally compromised endothelial barrier. TESTING THE HYPOTHESIS: This hypothesis could be verified: by measuring binding of perifosine and other lysolipids to albumin and to lysophospholipid receptor (LPL-R) group; formation of stress fibers and subsequent cell contraction; activation of RhoA, and endothelial barrier dysfunction; by a synthesis of other LPC analogues with high critical micellar concentration and measuring their effect on transendothelial permeability in presence and absence of albumin. IMPLICATIONS OF THE HYPOTHESIS: We propose that lysolipid containing liposomal formulations might be used as nonspecific transendothelial transport vector, since leakage of liposome encapsulated active drug occurs simultaneously with the release of the lysolipids. The concentration of the active drug is therefore expected to be the highest at the site of compromised endothelial barrier. By appropriate choice of the lysolipids an endothelial barrier would stay open only for a short time. Use of such liposomes would potentially maximize the delivery of the drug while limiting the passage of toxic substances and pathogens across the endothelial barrier. Combining lysolipid containing liposomes with superparamagnetic iron oxide nanoparticles or a targeting ligand might be required to efficiently localize drug delivery to a disease affected tissue and to avoid endothelial disruption over the entire body. BioMed Central 2012-04-10 /pmc/articles/PMC3403881/ /pubmed/22490670 http://dx.doi.org/10.1186/1756-0500-5-179 Text en Copyright ©2012 Koklic and trancar; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Hypothesis
Koklic, Tilen
trancar, Janez
Lysolipid containing liposomes for transendothelial drug delivery
title Lysolipid containing liposomes for transendothelial drug delivery
title_full Lysolipid containing liposomes for transendothelial drug delivery
title_fullStr Lysolipid containing liposomes for transendothelial drug delivery
title_full_unstemmed Lysolipid containing liposomes for transendothelial drug delivery
title_short Lysolipid containing liposomes for transendothelial drug delivery
title_sort lysolipid containing liposomes for transendothelial drug delivery
topic Hypothesis
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403881/
https://www.ncbi.nlm.nih.gov/pubmed/22490670
http://dx.doi.org/10.1186/1756-0500-5-179
work_keys_str_mv AT koklictilen lysolipidcontainingliposomesfortransendothelialdrugdelivery
AT trancarjanez lysolipidcontainingliposomesfortransendothelialdrugdelivery