Cargando…
Immobilization of tris(2 pyridyl) methylamine in a PVC-Membrane Sensor and Characterization of the Membrane Properties
BACKGROUND: Due to the increasing industrial use of titanium compounds, its determination is the subject of considerable efforts. The ionophore or membrane active recognition is the most important component of any polymeric membrane sensor. The sensor’s response depends on the ionophore and bonding...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403891/ https://www.ncbi.nlm.nih.gov/pubmed/22564322 http://dx.doi.org/10.1186/1752-153X-6-40 |
Sumario: | BACKGROUND: Due to the increasing industrial use of titanium compounds, its determination is the subject of considerable efforts. The ionophore or membrane active recognition is the most important component of any polymeric membrane sensor. The sensor’s response depends on the ionophore and bonding between the ionophore and the target ion. Ionophores with molecule-sized dimensions containing cavities or semi-cavities can surround the target ion. The bond between the ionophore and target ion gives different selectivity and sensitivity toward the other ions. Therefore, ionophores with different binding strengths can be used in the sensor. RESULTS: In the present work, poly (vinyl chloride) (PVC) based membrane incorporating tris (2 pyridyl) methylamine (tpm) as an ionophore has been prepared and explored as a titanium(III) selective sensor. CONCLUSIONS: The strengths of the ion–ionophore (Ti(OH)(2+)-tpm) interactions and the role of ionophore on membrane were tested by various techniques such as elemental analysis, UV–vis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD). All data approved the successful incorporation of organic group via covalent bond. |
---|