Cargando…
Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods
BACKGROUND: Multiple imputation is often used for missing data. When a model contains as covariates more than one function of a variable, it is not obvious how best to impute missing values in these covariates. Consider a regression with outcome Y and covariates X and X(2). In 'passive imputati...
Autores principales: | Seaman, Shaun R, Bartlett, Jonathan W, White, Ian R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403931/ https://www.ncbi.nlm.nih.gov/pubmed/22489953 http://dx.doi.org/10.1186/1471-2288-12-46 |
Ejemplares similares
-
Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model
por: Bartlett, Jonathan W, et al.
Publicado: (2015) -
Multiple imputation for an incomplete covariate that is a ratio
por: Morris, Tim P, et al.
Publicado: (2014) -
Imputing missing covariate values for the Cox model
por: White, Ian R, et al.
Publicado: (2009) -
Multiple Imputation of Missing Data in Nested Case-Control and Case-Cohort Studies
por: Keogh, Ruth H., et al.
Publicado: (2018) -
Propensity score analysis with partially observed covariates: How
should multiple imputation be used?
por: Leyrat, Clémence, et al.
Publicado: (2017)