Cargando…

Learning view invariant recognition with partially occluded objects

This paper investigates how a neural network model of the ventral visual pathway, VisNet, can form separate view invariant representations of a number of objects seen rotating together. In particular, in the current work one of the rotating objects is always partially occluded by the other objects p...

Descripción completa

Detalles Bibliográficos
Autores principales: Tromans, James M., Higgins, Irina, Stringer, Simon M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404435/
https://www.ncbi.nlm.nih.gov/pubmed/22848200
http://dx.doi.org/10.3389/fncom.2012.00048
Descripción
Sumario:This paper investigates how a neural network model of the ventral visual pathway, VisNet, can form separate view invariant representations of a number of objects seen rotating together. In particular, in the current work one of the rotating objects is always partially occluded by the other objects present during training. A key challenge for the model is to link together the separate partial views of the occluded object into a single view invariant representation of that object. We show how this can be achieved by Continuous Transformation (CT) learning, which relies on spatial similarity between successive views of each object. After training, the network had developed cells in the output layer which had learned to respond invariantly to particular objects over most or all views, with each cell responding to only one object. All objects, including the partially occluded object, were individually represented by a unique subset of output cells.