Cargando…
Visual and spatial modulation of tactile extinction: behavioural and electrophysiological evidence
Crossing the hands over the midline reduces left tactile extinction to double simultaneous stimulation in right-brain-damaged patients, suggesting that spatial attentional biases toward the ipsilesional (right) side of space contribute to the patients' contralesional (left) deficit. We investig...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404548/ https://www.ncbi.nlm.nih.gov/pubmed/22848197 http://dx.doi.org/10.3389/fnhum.2012.00217 |
_version_ | 1782239019345641472 |
---|---|
author | Sambo, Chiara F. Vallar, Giuseppe Fortis, Paola Ronchi, Roberta Posteraro, Lucio Forster, Bettina Maravita, Angelo |
author_facet | Sambo, Chiara F. Vallar, Giuseppe Fortis, Paola Ronchi, Roberta Posteraro, Lucio Forster, Bettina Maravita, Angelo |
author_sort | Sambo, Chiara F. |
collection | PubMed |
description | Crossing the hands over the midline reduces left tactile extinction to double simultaneous stimulation in right-brain-damaged patients, suggesting that spatial attentional biases toward the ipsilesional (right) side of space contribute to the patients' contralesional (left) deficit. We investigated (1) whether the position of the left hand, and its vision, affected processing speed of tactile stimuli, and (2) the electrophysiological underpinnings of the effect of hand position. (1) Four right-brain-damaged patients with spatial neglect and contralesional left tactile extinction or somatosensory deficits, and eight neurologically unimpaired participants, performed a speeded detection task on single taps delivered on their left index finger. In patients, placing the left hand in the right (heteronymous) hemi-space resulted in faster reaction times (RTs) to tactile stimuli, compared to placing that hand in the left (homonymous) hemi-space, particularly when the hand was visible. By contrast, in controls placing the left hand in the heteronymous hemi-space increased RTs. (2) Somatosensory event-related potentials (ERPs) were recorded from one patient and two controls in response to the stimulation of the left hand, placed in the two spatial positions. In the patient, the somatosensory P70, N140, and N250 components were enhanced when the left hand was placed in the heteronymous hemi-space, whereas in controls these components were not modulated by hand position. The novel findings are that in patients placing the left hand in the right, ipsilesional hemi-space yields a temporal advantage in processing tactile stimuli, and this effect may rely on a modulation of stimulus processing taking place as early as in the primary somatosensory cortex, as indexed by evoked potentials. Furthermore, vision enhances tactile processing specifically when the left hand is placed in the hemi-space toward which the patients' attentional biases are pathologically directed, namely rightwards. |
format | Online Article Text |
id | pubmed-3404548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-34045482012-07-30 Visual and spatial modulation of tactile extinction: behavioural and electrophysiological evidence Sambo, Chiara F. Vallar, Giuseppe Fortis, Paola Ronchi, Roberta Posteraro, Lucio Forster, Bettina Maravita, Angelo Front Hum Neurosci Neuroscience Crossing the hands over the midline reduces left tactile extinction to double simultaneous stimulation in right-brain-damaged patients, suggesting that spatial attentional biases toward the ipsilesional (right) side of space contribute to the patients' contralesional (left) deficit. We investigated (1) whether the position of the left hand, and its vision, affected processing speed of tactile stimuli, and (2) the electrophysiological underpinnings of the effect of hand position. (1) Four right-brain-damaged patients with spatial neglect and contralesional left tactile extinction or somatosensory deficits, and eight neurologically unimpaired participants, performed a speeded detection task on single taps delivered on their left index finger. In patients, placing the left hand in the right (heteronymous) hemi-space resulted in faster reaction times (RTs) to tactile stimuli, compared to placing that hand in the left (homonymous) hemi-space, particularly when the hand was visible. By contrast, in controls placing the left hand in the heteronymous hemi-space increased RTs. (2) Somatosensory event-related potentials (ERPs) were recorded from one patient and two controls in response to the stimulation of the left hand, placed in the two spatial positions. In the patient, the somatosensory P70, N140, and N250 components were enhanced when the left hand was placed in the heteronymous hemi-space, whereas in controls these components were not modulated by hand position. The novel findings are that in patients placing the left hand in the right, ipsilesional hemi-space yields a temporal advantage in processing tactile stimuli, and this effect may rely on a modulation of stimulus processing taking place as early as in the primary somatosensory cortex, as indexed by evoked potentials. Furthermore, vision enhances tactile processing specifically when the left hand is placed in the hemi-space toward which the patients' attentional biases are pathologically directed, namely rightwards. Frontiers Media S.A. 2012-07-25 /pmc/articles/PMC3404548/ /pubmed/22848197 http://dx.doi.org/10.3389/fnhum.2012.00217 Text en Copyright © 2012 Sambo, Vallar, Fortis, Ronchi, Posteraro, Forster and Maravita. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
spellingShingle | Neuroscience Sambo, Chiara F. Vallar, Giuseppe Fortis, Paola Ronchi, Roberta Posteraro, Lucio Forster, Bettina Maravita, Angelo Visual and spatial modulation of tactile extinction: behavioural and electrophysiological evidence |
title | Visual and spatial modulation of tactile extinction: behavioural and electrophysiological evidence |
title_full | Visual and spatial modulation of tactile extinction: behavioural and electrophysiological evidence |
title_fullStr | Visual and spatial modulation of tactile extinction: behavioural and electrophysiological evidence |
title_full_unstemmed | Visual and spatial modulation of tactile extinction: behavioural and electrophysiological evidence |
title_short | Visual and spatial modulation of tactile extinction: behavioural and electrophysiological evidence |
title_sort | visual and spatial modulation of tactile extinction: behavioural and electrophysiological evidence |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404548/ https://www.ncbi.nlm.nih.gov/pubmed/22848197 http://dx.doi.org/10.3389/fnhum.2012.00217 |
work_keys_str_mv | AT sambochiaraf visualandspatialmodulationoftactileextinctionbehaviouralandelectrophysiologicalevidence AT vallargiuseppe visualandspatialmodulationoftactileextinctionbehaviouralandelectrophysiologicalevidence AT fortispaola visualandspatialmodulationoftactileextinctionbehaviouralandelectrophysiologicalevidence AT ronchiroberta visualandspatialmodulationoftactileextinctionbehaviouralandelectrophysiologicalevidence AT posterarolucio visualandspatialmodulationoftactileextinctionbehaviouralandelectrophysiologicalevidence AT forsterbettina visualandspatialmodulationoftactileextinctionbehaviouralandelectrophysiologicalevidence AT maravitaangelo visualandspatialmodulationoftactileextinctionbehaviouralandelectrophysiologicalevidence |