Cargando…
The bone morphogenetic protein receptor-1A pathway is required for lactogenic differentiation of mammary epithelial cells in vitro
Bone morphogenetic proteins (BMPs) have been implicated in the control of proliferation, tissue formation, and differentiation. BMPs regulate the biology of stem and progenitor cells and can promote cellular differentiation, depending on the cell type and context. Although the BMP pathway is known t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404688/ https://www.ncbi.nlm.nih.gov/pubmed/22729646 http://dx.doi.org/10.1007/s11626-012-9522-z |
Sumario: | Bone morphogenetic proteins (BMPs) have been implicated in the control of proliferation, tissue formation, and differentiation. BMPs regulate the biology of stem and progenitor cells and can promote cellular differentiation, depending on the cell type and context. Although the BMP pathway is known to be involved in early embryonic development of the mammary gland via mesenchymal cells, its role in later epithelial cellular differentiation has not been examined. The majority of the mammary gland development occurs post-natal, and its final functional differentiation is characterized by the emergence of alveolar cells that produce milk proteins. Here, we tested the hypothesis that bone morphogenetic protein receptor 1A (BMPR1A) function was required for mammary epithelial cell differentiation. We found that the BMPR1A-SMAD1/5/8 pathway was predominantly active in undifferentiated mammary epithelial cells, compared with differentiated cells. Reduction of BMPR1A mRNA and protein, using short hairpin RNA, resulted in a reduction of SMAD1/5/8 phosphorylation in undifferentiated cells, indicating an impact on this pathway. When the expression of the BMPR1A gene knocked down in undifferentiated cells, this also prevented beta-casein production during differentiation of the mammary epithelial cells by lactogenic hormone stimulation. Addition of Noggin, a BMP antagonist, also prevented beta-casein expression. Together, this demonstrated that BMP-BMPR1A-SMAD1/5/8 signal transduction is required for beta-casein production, a marker of alveolar cell differentiation. This evidence functionally identifies BMPR1A as a potential new regulator of mammary epithelial alveolar cell differentiation. |
---|