Cargando…
Interleukin-1 beta: a potential link between stress and the development of visceral obesity
BACKGROUND: A disproportionate amount of body fat within the abdominal cavity, otherwise known as visceral obesity, best predicts the negative health outcomes associated with high levels body fat. Growing evidence suggests that repeated activation of the stress response can favor visceral fat deposi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404929/ https://www.ncbi.nlm.nih.gov/pubmed/22738239 http://dx.doi.org/10.1186/1472-6793-12-8 |
_version_ | 1782239044352081920 |
---|---|
author | Speaker, Kristin J Fleshner, Monika |
author_facet | Speaker, Kristin J Fleshner, Monika |
author_sort | Speaker, Kristin J |
collection | PubMed |
description | BACKGROUND: A disproportionate amount of body fat within the abdominal cavity, otherwise known as visceral obesity, best predicts the negative health outcomes associated with high levels body fat. Growing evidence suggests that repeated activation of the stress response can favor visceral fat deposition and that visceral obesity may induce low-grade, systemic inflammation which is etiologically linked to the pathogenesis of obesity related diseases such as cardiovascular disease and type 2 diabetes. While the obesity epidemic has fueled considerable interest in these obesity-related inflammatory diseases, surprisingly little research is currently focused on understanding the functions of inflammatory proteins in healthy, non-obese white adipose tissue (WAT) and their possible role in modulating stress-induced shifts in body fat distribution. HYPOTHESIS: The current review presents evidence in support the novel hypothesis that stress-evoked interleukin-1 beta (IL-1β) signaling within subcutaneous adipose tissue, when repeatedly induced, contributes toward the development of visceral obesity. It is suggested that because acute stressor exposure differentially increases IL-1β levels within subcutaneous adipose relative to visceral adipose tissue in otherwise healthy, non-obese rats, repeated induction of this response may impair the ability of subcutaneous adipose tissue to uptake energy substrates, synthesize and retain triglycerides, and/or adapt to positive energy balance via hyperplasia. Consequently, circulating energy substrates may be disproportionately shunted to visceral adipose tissue for storage, thus driving the development of visceral obesity. CONCLUSIONS: This review establishes the following key points: 1) body fat distribution outweighs the importance of total body fat when predicting obesity-related disease risk; 2) repeated exposure to stress can drive the development of visceral obesity independent of changes in body weight; 3) because of the heterogeneity of WAT composition and function, an accurate understanding of WAT responses requires sampling multiple WAT depots; 4) acute, non-pathogenic stressor exposure increases WAT IL-1β concentrations in a depot specific manner suggesting an adaptive, metabolic role for this cytokine; however, when repeated, stress-induced IL-1β in non-visceral WAT may result in functional impairments that drive the development of stress-induced visceral obesity. |
format | Online Article Text |
id | pubmed-3404929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34049292012-07-26 Interleukin-1 beta: a potential link between stress and the development of visceral obesity Speaker, Kristin J Fleshner, Monika BMC Physiol Review BACKGROUND: A disproportionate amount of body fat within the abdominal cavity, otherwise known as visceral obesity, best predicts the negative health outcomes associated with high levels body fat. Growing evidence suggests that repeated activation of the stress response can favor visceral fat deposition and that visceral obesity may induce low-grade, systemic inflammation which is etiologically linked to the pathogenesis of obesity related diseases such as cardiovascular disease and type 2 diabetes. While the obesity epidemic has fueled considerable interest in these obesity-related inflammatory diseases, surprisingly little research is currently focused on understanding the functions of inflammatory proteins in healthy, non-obese white adipose tissue (WAT) and their possible role in modulating stress-induced shifts in body fat distribution. HYPOTHESIS: The current review presents evidence in support the novel hypothesis that stress-evoked interleukin-1 beta (IL-1β) signaling within subcutaneous adipose tissue, when repeatedly induced, contributes toward the development of visceral obesity. It is suggested that because acute stressor exposure differentially increases IL-1β levels within subcutaneous adipose relative to visceral adipose tissue in otherwise healthy, non-obese rats, repeated induction of this response may impair the ability of subcutaneous adipose tissue to uptake energy substrates, synthesize and retain triglycerides, and/or adapt to positive energy balance via hyperplasia. Consequently, circulating energy substrates may be disproportionately shunted to visceral adipose tissue for storage, thus driving the development of visceral obesity. CONCLUSIONS: This review establishes the following key points: 1) body fat distribution outweighs the importance of total body fat when predicting obesity-related disease risk; 2) repeated exposure to stress can drive the development of visceral obesity independent of changes in body weight; 3) because of the heterogeneity of WAT composition and function, an accurate understanding of WAT responses requires sampling multiple WAT depots; 4) acute, non-pathogenic stressor exposure increases WAT IL-1β concentrations in a depot specific manner suggesting an adaptive, metabolic role for this cytokine; however, when repeated, stress-induced IL-1β in non-visceral WAT may result in functional impairments that drive the development of stress-induced visceral obesity. BioMed Central 2012-06-27 /pmc/articles/PMC3404929/ /pubmed/22738239 http://dx.doi.org/10.1186/1472-6793-12-8 Text en Copyright ©2012 Speaker and Fleshner; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Speaker, Kristin J Fleshner, Monika Interleukin-1 beta: a potential link between stress and the development of visceral obesity |
title | Interleukin-1 beta: a potential link between stress and the development of visceral obesity |
title_full | Interleukin-1 beta: a potential link between stress and the development of visceral obesity |
title_fullStr | Interleukin-1 beta: a potential link between stress and the development of visceral obesity |
title_full_unstemmed | Interleukin-1 beta: a potential link between stress and the development of visceral obesity |
title_short | Interleukin-1 beta: a potential link between stress and the development of visceral obesity |
title_sort | interleukin-1 beta: a potential link between stress and the development of visceral obesity |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404929/ https://www.ncbi.nlm.nih.gov/pubmed/22738239 http://dx.doi.org/10.1186/1472-6793-12-8 |
work_keys_str_mv | AT speakerkristinj interleukin1betaapotentiallinkbetweenstressandthedevelopmentofvisceralobesity AT fleshnermonika interleukin1betaapotentiallinkbetweenstressandthedevelopmentofvisceralobesity |