Cargando…

Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats

BACKGROUND: Although diabetes mellitus (DM) can be treated with islet transplantation, a scarcity of donors limits the utility of this technique. This study investigated whether human mesenchymal stem cells (MSCs) from umbilical cord could be induced efficiently to differentiate into insulin-produci...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Pei-Jiun, Wang, Hwai-Shi, Shyr, Yi-Ming, Weng, Zen-Chung, Tai, Ling-Chen, Shyu, Jia-Fwu, Chen, Tien-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404952/
https://www.ncbi.nlm.nih.gov/pubmed/22545626
http://dx.doi.org/10.1186/1423-0127-19-47
_version_ 1782239049704013824
author Tsai, Pei-Jiun
Wang, Hwai-Shi
Shyr, Yi-Ming
Weng, Zen-Chung
Tai, Ling-Chen
Shyu, Jia-Fwu
Chen, Tien-Hua
author_facet Tsai, Pei-Jiun
Wang, Hwai-Shi
Shyr, Yi-Ming
Weng, Zen-Chung
Tai, Ling-Chen
Shyu, Jia-Fwu
Chen, Tien-Hua
author_sort Tsai, Pei-Jiun
collection PubMed
description BACKGROUND: Although diabetes mellitus (DM) can be treated with islet transplantation, a scarcity of donors limits the utility of this technique. This study investigated whether human mesenchymal stem cells (MSCs) from umbilical cord could be induced efficiently to differentiate into insulin-producing cells. Secondly, we evaluated the effect of portal vein transplantation of these differentiated cells in the treatment of streptozotocin-induced diabetes in rats. METHODS: MSCs from human umbilical cord were induced in three stages to differentiate into insulin-producing cells and evaluated by immunocytochemistry, reverse transcriptase, and real-time PCR, and ELISA. Differentiated cells were transplanted into the liver of diabetic rats using a Port-A catheter via the portal vein. Blood glucose levels were monitored weekly. RESULTS: Human nuclei and C-peptide were detected in the rat liver by immunohistochemistry. Pancreatic β-cell development-related genes were expressed in the differentiated cells. C-peptide release was increased after glucose challenge in vitro. Furthermore, after transplantation of differentiated cells into the diabetic rats, blood sugar level decreased. Insulin-producing cells containing human C-peptide and human nuclei were located in the liver. CONCLUSION: Thus, a Port-A catheter can be used to transplant differentiated insulin-producing cells from human MSCs into the portal vein to alleviate hyperglycemia among diabetic rats.
format Online
Article
Text
id pubmed-3404952
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34049522012-07-26 Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats Tsai, Pei-Jiun Wang, Hwai-Shi Shyr, Yi-Ming Weng, Zen-Chung Tai, Ling-Chen Shyu, Jia-Fwu Chen, Tien-Hua J Biomed Sci Research BACKGROUND: Although diabetes mellitus (DM) can be treated with islet transplantation, a scarcity of donors limits the utility of this technique. This study investigated whether human mesenchymal stem cells (MSCs) from umbilical cord could be induced efficiently to differentiate into insulin-producing cells. Secondly, we evaluated the effect of portal vein transplantation of these differentiated cells in the treatment of streptozotocin-induced diabetes in rats. METHODS: MSCs from human umbilical cord were induced in three stages to differentiate into insulin-producing cells and evaluated by immunocytochemistry, reverse transcriptase, and real-time PCR, and ELISA. Differentiated cells were transplanted into the liver of diabetic rats using a Port-A catheter via the portal vein. Blood glucose levels were monitored weekly. RESULTS: Human nuclei and C-peptide were detected in the rat liver by immunohistochemistry. Pancreatic β-cell development-related genes were expressed in the differentiated cells. C-peptide release was increased after glucose challenge in vitro. Furthermore, after transplantation of differentiated cells into the diabetic rats, blood sugar level decreased. Insulin-producing cells containing human C-peptide and human nuclei were located in the liver. CONCLUSION: Thus, a Port-A catheter can be used to transplant differentiated insulin-producing cells from human MSCs into the portal vein to alleviate hyperglycemia among diabetic rats. BioMed Central 2012-04-30 /pmc/articles/PMC3404952/ /pubmed/22545626 http://dx.doi.org/10.1186/1423-0127-19-47 Text en Copyright ©2012 Tsai et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Tsai, Pei-Jiun
Wang, Hwai-Shi
Shyr, Yi-Ming
Weng, Zen-Chung
Tai, Ling-Chen
Shyu, Jia-Fwu
Chen, Tien-Hua
Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats
title Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats
title_full Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats
title_fullStr Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats
title_full_unstemmed Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats
title_short Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats
title_sort transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404952/
https://www.ncbi.nlm.nih.gov/pubmed/22545626
http://dx.doi.org/10.1186/1423-0127-19-47
work_keys_str_mv AT tsaipeijiun transplantationofinsulinproducingcellsfromumbilicalcordmesenchymalstemcellsforthetreatmentofstreptozotocininduceddiabeticrats
AT wanghwaishi transplantationofinsulinproducingcellsfromumbilicalcordmesenchymalstemcellsforthetreatmentofstreptozotocininduceddiabeticrats
AT shyryiming transplantationofinsulinproducingcellsfromumbilicalcordmesenchymalstemcellsforthetreatmentofstreptozotocininduceddiabeticrats
AT wengzenchung transplantationofinsulinproducingcellsfromumbilicalcordmesenchymalstemcellsforthetreatmentofstreptozotocininduceddiabeticrats
AT tailingchen transplantationofinsulinproducingcellsfromumbilicalcordmesenchymalstemcellsforthetreatmentofstreptozotocininduceddiabeticrats
AT shyujiafwu transplantationofinsulinproducingcellsfromumbilicalcordmesenchymalstemcellsforthetreatmentofstreptozotocininduceddiabeticrats
AT chentienhua transplantationofinsulinproducingcellsfromumbilicalcordmesenchymalstemcellsforthetreatmentofstreptozotocininduceddiabeticrats