Cargando…

Genome-enabled prediction of genetic values using radial basis function neural networks

The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use n...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Camacho, J. M., de los Campos, G., Pérez, P., Gianola, D., Cairns, J. E., Mahuku, G., Babu, R., Crossa, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405257/
https://www.ncbi.nlm.nih.gov/pubmed/22566067
http://dx.doi.org/10.1007/s00122-012-1868-9
_version_ 1782239105283784704
author González-Camacho, J. M.
de los Campos, G.
Pérez, P.
Gianola, D.
Cairns, J. E.
Mahuku, G.
Babu, R.
Crossa, J.
author_facet González-Camacho, J. M.
de los Campos, G.
Pérez, P.
Gianola, D.
Cairns, J. E.
Mahuku, G.
Babu, R.
Crossa, J.
author_sort González-Camacho, J. M.
collection PubMed
description The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use neural networks with radial basis functions (RBFs) for prediction with dense molecular markers. We illustrate the use of the linear Bayesian LASSO regression model and of two non-linear regression models, reproducing kernel Hilbert spaces (RKHS) regression and radial basis function neural networks (RBFNN) on simulated data and real maize lines genotyped with 55,000 markers and evaluated for several trait–environment combinations. The empirical results of this study indicated that the three models showed similar overall prediction accuracy, with a slight and consistent superiority of RKHS and RBFNN over the additive Bayesian LASSO model. Results from the simulated data indicate that RKHS and RBFNN models captured epistatic effects; however, adding non-signal (redundant) predictors (interaction between markers) can adversely affect the predictive accuracy of the non-linear regression models.
format Online
Article
Text
id pubmed-3405257
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-34052572012-08-02 Genome-enabled prediction of genetic values using radial basis function neural networks González-Camacho, J. M. de los Campos, G. Pérez, P. Gianola, D. Cairns, J. E. Mahuku, G. Babu, R. Crossa, J. Theor Appl Genet Original Paper The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use neural networks with radial basis functions (RBFs) for prediction with dense molecular markers. We illustrate the use of the linear Bayesian LASSO regression model and of two non-linear regression models, reproducing kernel Hilbert spaces (RKHS) regression and radial basis function neural networks (RBFNN) on simulated data and real maize lines genotyped with 55,000 markers and evaluated for several trait–environment combinations. The empirical results of this study indicated that the three models showed similar overall prediction accuracy, with a slight and consistent superiority of RKHS and RBFNN over the additive Bayesian LASSO model. Results from the simulated data indicate that RKHS and RBFNN models captured epistatic effects; however, adding non-signal (redundant) predictors (interaction between markers) can adversely affect the predictive accuracy of the non-linear regression models. Springer-Verlag 2012-05-08 2012 /pmc/articles/PMC3405257/ /pubmed/22566067 http://dx.doi.org/10.1007/s00122-012-1868-9 Text en © The Author(s) 2012 https://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Original Paper
González-Camacho, J. M.
de los Campos, G.
Pérez, P.
Gianola, D.
Cairns, J. E.
Mahuku, G.
Babu, R.
Crossa, J.
Genome-enabled prediction of genetic values using radial basis function neural networks
title Genome-enabled prediction of genetic values using radial basis function neural networks
title_full Genome-enabled prediction of genetic values using radial basis function neural networks
title_fullStr Genome-enabled prediction of genetic values using radial basis function neural networks
title_full_unstemmed Genome-enabled prediction of genetic values using radial basis function neural networks
title_short Genome-enabled prediction of genetic values using radial basis function neural networks
title_sort genome-enabled prediction of genetic values using radial basis function neural networks
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405257/
https://www.ncbi.nlm.nih.gov/pubmed/22566067
http://dx.doi.org/10.1007/s00122-012-1868-9
work_keys_str_mv AT gonzalezcamachojm genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks
AT deloscamposg genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks
AT perezp genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks
AT gianolad genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks
AT cairnsje genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks
AT mahukug genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks
AT babur genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks
AT crossaj genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks