Cargando…
Genome-enabled prediction of genetic values using radial basis function neural networks
The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use n...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405257/ https://www.ncbi.nlm.nih.gov/pubmed/22566067 http://dx.doi.org/10.1007/s00122-012-1868-9 |
_version_ | 1782239105283784704 |
---|---|
author | González-Camacho, J. M. de los Campos, G. Pérez, P. Gianola, D. Cairns, J. E. Mahuku, G. Babu, R. Crossa, J. |
author_facet | González-Camacho, J. M. de los Campos, G. Pérez, P. Gianola, D. Cairns, J. E. Mahuku, G. Babu, R. Crossa, J. |
author_sort | González-Camacho, J. M. |
collection | PubMed |
description | The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use neural networks with radial basis functions (RBFs) for prediction with dense molecular markers. We illustrate the use of the linear Bayesian LASSO regression model and of two non-linear regression models, reproducing kernel Hilbert spaces (RKHS) regression and radial basis function neural networks (RBFNN) on simulated data and real maize lines genotyped with 55,000 markers and evaluated for several trait–environment combinations. The empirical results of this study indicated that the three models showed similar overall prediction accuracy, with a slight and consistent superiority of RKHS and RBFNN over the additive Bayesian LASSO model. Results from the simulated data indicate that RKHS and RBFNN models captured epistatic effects; however, adding non-signal (redundant) predictors (interaction between markers) can adversely affect the predictive accuracy of the non-linear regression models. |
format | Online Article Text |
id | pubmed-3405257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-34052572012-08-02 Genome-enabled prediction of genetic values using radial basis function neural networks González-Camacho, J. M. de los Campos, G. Pérez, P. Gianola, D. Cairns, J. E. Mahuku, G. Babu, R. Crossa, J. Theor Appl Genet Original Paper The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use neural networks with radial basis functions (RBFs) for prediction with dense molecular markers. We illustrate the use of the linear Bayesian LASSO regression model and of two non-linear regression models, reproducing kernel Hilbert spaces (RKHS) regression and radial basis function neural networks (RBFNN) on simulated data and real maize lines genotyped with 55,000 markers and evaluated for several trait–environment combinations. The empirical results of this study indicated that the three models showed similar overall prediction accuracy, with a slight and consistent superiority of RKHS and RBFNN over the additive Bayesian LASSO model. Results from the simulated data indicate that RKHS and RBFNN models captured epistatic effects; however, adding non-signal (redundant) predictors (interaction between markers) can adversely affect the predictive accuracy of the non-linear regression models. Springer-Verlag 2012-05-08 2012 /pmc/articles/PMC3405257/ /pubmed/22566067 http://dx.doi.org/10.1007/s00122-012-1868-9 Text en © The Author(s) 2012 https://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Original Paper González-Camacho, J. M. de los Campos, G. Pérez, P. Gianola, D. Cairns, J. E. Mahuku, G. Babu, R. Crossa, J. Genome-enabled prediction of genetic values using radial basis function neural networks |
title | Genome-enabled prediction of genetic values using radial basis function neural networks |
title_full | Genome-enabled prediction of genetic values using radial basis function neural networks |
title_fullStr | Genome-enabled prediction of genetic values using radial basis function neural networks |
title_full_unstemmed | Genome-enabled prediction of genetic values using radial basis function neural networks |
title_short | Genome-enabled prediction of genetic values using radial basis function neural networks |
title_sort | genome-enabled prediction of genetic values using radial basis function neural networks |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405257/ https://www.ncbi.nlm.nih.gov/pubmed/22566067 http://dx.doi.org/10.1007/s00122-012-1868-9 |
work_keys_str_mv | AT gonzalezcamachojm genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks AT deloscamposg genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks AT perezp genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks AT gianolad genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks AT cairnsje genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks AT mahukug genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks AT babur genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks AT crossaj genomeenabledpredictionofgeneticvaluesusingradialbasisfunctionneuralnetworks |