Cargando…
Genome-enabled prediction of genetic values using radial basis function neural networks
The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use n...
Autores principales: | González-Camacho, J. M., de los Campos, G., Pérez, P., Gianola, D., Cairns, J. E., Mahuku, G., Babu, R., Crossa, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405257/ https://www.ncbi.nlm.nih.gov/pubmed/22566067 http://dx.doi.org/10.1007/s00122-012-1868-9 |
Ejemplares similares
-
Genome-enabled prediction using probabilistic neural network classifiers
por: González-Camacho, Juan Manuel, et al.
Publicado: (2016) -
Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat
por: Pérez-Rodríguez, Paulino, et al.
Publicado: (2012) -
Bayesian Genomic-Enabled Prediction as an Inverse Problem
por: Cuevas, Jaime, et al.
Publicado: (2014) -
Radial Basis Function Artificial Neural Network for the Investigation of Thyroid Cytological Lesions
por: Fragopoulos, Christos, et al.
Publicado: (2020) -
Research on an online self-organizing radial basis function neural network
por: Han, Honggui, et al.
Publicado: (2010)