Cargando…

The effect of precipitants on Ni-Al(2)O(3) catalysts prepared by a co-precipitation method for internal reforming in molten carbonate fuel cells

Ni-Al(2)O(3) catalysts are prepared via the co-precipitation method using various precipitants: urea, Na(2)CO(3), NaOH, K(2)CO(3), KOH and NH(4)OH. The effects of the precipitants on the physicochemical properties and catalytic activities of the Ni-Al(2)O(3) catalysts are investigated. The Ni50-urea...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, You-Shick, Yoon, Wang-Lai, Seo, Yong-Seog, Rhee, Young-Woo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407876/
https://www.ncbi.nlm.nih.gov/pubmed/22962548
http://dx.doi.org/10.1016/j.catcom.2012.04.029
Descripción
Sumario:Ni-Al(2)O(3) catalysts are prepared via the co-precipitation method using various precipitants: urea, Na(2)CO(3), NaOH, K(2)CO(3), KOH and NH(4)OH. The effects of the precipitants on the physicochemical properties and catalytic activities of the Ni-Al(2)O(3) catalysts are investigated. The Ni50-urea catalyst displays the largest specific surface area and the highest pore volume. This catalyst also exhibits the highest Ni dispersion and the largest Ni surface area. Ni50-urea catalyst prepared with urea as precipitant and Ni50-K(2)CO(3) catalyst prepared with K(2)CO(3) as precipitant exhibit high pore volumes and good catalytic activities for methane steam reforming. The Ni50-urea catalyst exhibits the best physicochemical properties and shows good catalytic activity and a strong resistance to electrolyte contamination.