Cargando…
Labeling Emotions in Suicide Notes: Cost-Sensitive Learning with Heterogeneous Features
This paper describes a system developed for Track 2 of the 2011 Medical NLP Challenge on identifying emotions in suicide notes. Our approach involves learning a collection of one-versus-all classifiers, each deciding whether or not a particular label should be assigned to a given sentence. We explor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409483/ https://www.ncbi.nlm.nih.gov/pubmed/22879765 http://dx.doi.org/10.4137/BII.S8930 |
Sumario: | This paper describes a system developed for Track 2 of the 2011 Medical NLP Challenge on identifying emotions in suicide notes. Our approach involves learning a collection of one-versus-all classifiers, each deciding whether or not a particular label should be assigned to a given sentence. We explore a variety of features types—syntactic, semantic and surface-oriented. Cost-sensitive learning is used for dealing with the issue of class imbalance in the data. |
---|