Cargando…
Emotion Detection in Suicide Notes using Maximum Entropy Classification
An ensemble of supervised maximum entropy classifiers can accurately detect and identify sentiments expressed in suicide notes. Using lexical and syntactic features extracted from a training set of externally annotated suicide notes, we trained separate classifiers for each of fifteen pre-specified...
Autores principales: | Wicentowski, Richard, Sydes, Matthew R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409489/ https://www.ncbi.nlm.nih.gov/pubmed/22879760 http://dx.doi.org/10.4137/BII.S8972 |
Ejemplares similares
-
Cross-sectional analysis of UK research studies in 2015: results from a scoping project with the UK Health Research Authority
por: Clark, Tim, et al.
Publicado: (2018) -
Some Notes on Maximum Entropy Utility
por: Kim, Eun Young, et al.
Publicado: (2019) -
Combining Lexico-semantic Features for Emotion Classification in Suicide Notes
por: Desmet, Bart, et al.
Publicado: (2012) -
Fine-Grained Emotion Detection in Suicide Notes: A Thresholding Approach to Multi-Label Classification
por: Luyckx, Kim, et al.
Publicado: (2012) -
Three Hybrid Classifiers for the Detection of Emotions in Suicide Notes
por: Liakata, Maria, et al.
Publicado: (2012)