Cargando…

LASSA: Emotion Detection via Information Fusion

Due to the complexity of emotions in suicide notes and the subtle nature of sentiments, this study proposes a fusion approach to tackle the challenge of sentiment classification in suicide notes: leveraging WordNet-based lexicons, manually created rules, character-based n-grams, and other linguistic...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Ning, Kübler, Sandra, Herring, Joshua, Hsu, Yu-Yin, Israel, Ross, Smiley, Charese
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409490/
https://www.ncbi.nlm.nih.gov/pubmed/22879762
http://dx.doi.org/10.4137/BII.S8949
_version_ 1782239594626940928
author Yu, Ning
Kübler, Sandra
Herring, Joshua
Hsu, Yu-Yin
Israel, Ross
Smiley, Charese
author_facet Yu, Ning
Kübler, Sandra
Herring, Joshua
Hsu, Yu-Yin
Israel, Ross
Smiley, Charese
author_sort Yu, Ning
collection PubMed
description Due to the complexity of emotions in suicide notes and the subtle nature of sentiments, this study proposes a fusion approach to tackle the challenge of sentiment classification in suicide notes: leveraging WordNet-based lexicons, manually created rules, character-based n-grams, and other linguistic features. Although our results are not satisfying, some valuable lessons are learned and promising future directions are identified.
format Online
Article
Text
id pubmed-3409490
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Libertas Academica
record_format MEDLINE/PubMed
spelling pubmed-34094902012-08-09 LASSA: Emotion Detection via Information Fusion Yu, Ning Kübler, Sandra Herring, Joshua Hsu, Yu-Yin Israel, Ross Smiley, Charese Biomed Inform Insights Original Research Due to the complexity of emotions in suicide notes and the subtle nature of sentiments, this study proposes a fusion approach to tackle the challenge of sentiment classification in suicide notes: leveraging WordNet-based lexicons, manually created rules, character-based n-grams, and other linguistic features. Although our results are not satisfying, some valuable lessons are learned and promising future directions are identified. Libertas Academica 2012-01-30 /pmc/articles/PMC3409490/ /pubmed/22879762 http://dx.doi.org/10.4137/BII.S8949 Text en © the author(s), publisher and licensee Libertas Academica Ltd. This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.
spellingShingle Original Research
Yu, Ning
Kübler, Sandra
Herring, Joshua
Hsu, Yu-Yin
Israel, Ross
Smiley, Charese
LASSA: Emotion Detection via Information Fusion
title LASSA: Emotion Detection via Information Fusion
title_full LASSA: Emotion Detection via Information Fusion
title_fullStr LASSA: Emotion Detection via Information Fusion
title_full_unstemmed LASSA: Emotion Detection via Information Fusion
title_short LASSA: Emotion Detection via Information Fusion
title_sort lassa: emotion detection via information fusion
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409490/
https://www.ncbi.nlm.nih.gov/pubmed/22879762
http://dx.doi.org/10.4137/BII.S8949
work_keys_str_mv AT yuning lassaemotiondetectionviainformationfusion
AT kublersandra lassaemotiondetectionviainformationfusion
AT herringjoshua lassaemotiondetectionviainformationfusion
AT hsuyuyin lassaemotiondetectionviainformationfusion
AT israelross lassaemotiondetectionviainformationfusion
AT smileycharese lassaemotiondetectionviainformationfusion