Cargando…
Topic Categorisation of Statements in Suicide Notes with Integrated Rules and Machine Learning
We describe and evaluate an automated approach used as part of the i2b2 2011 challenge to identify and categorise statements in suicide notes into one of 15 topics, including Love, Guilt, Thankfulness, Hopelessness and Instructions. The approach combines a set of lexico-syntactic rules with a set of...
Autores principales: | Kovačević, Aleksandar, Dehghan, Azad, Keane, John A., Nenadic, Goran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409492/ https://www.ncbi.nlm.nih.gov/pubmed/22879767 http://dx.doi.org/10.4137/BII.S8978 |
Ejemplares similares
-
Automatic mining of symptom severity from psychiatric evaluation notes
por: Karystianis, George, et al.
Publicado: (2017) -
Identification of transcription factor contexts in literature using machine learning approaches
por: Yang, Hui, et al.
Publicado: (2008) -
Clinical Text Data in Machine Learning: Systematic Review
por: Spasic, Irena, et al.
Publicado: (2020) -
Classification aware neural topic model for COVID-19 disinformation categorisation
por: Song, Xingyi, et al.
Publicado: (2021) -
Comparative analysis of classification techniques for topic-based biomedical literature categorisation
por: Stepanov, Ihor, et al.
Publicado: (2023)