Cargando…
Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice
The intestinal microbiota contributes to the development of the immune system, and conversely, the immune system influences the composition of the microbiota. Toll-like receptors (TLRs) in the gut recognize bacterial ligands. Although TLR signaling represents a major arm of the innate immune system,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409501/ https://www.ncbi.nlm.nih.gov/pubmed/22826298 http://dx.doi.org/10.1084/jem.20120504 |
_version_ | 1782239596987285504 |
---|---|
author | Ubeda, Carles Lipuma, Lauren Gobourne, Asia Viale, Agnes Leiner, Ingrid Equinda, Michele Khanin, Raya Pamer, Eric G. |
author_facet | Ubeda, Carles Lipuma, Lauren Gobourne, Asia Viale, Agnes Leiner, Ingrid Equinda, Michele Khanin, Raya Pamer, Eric G. |
author_sort | Ubeda, Carles |
collection | PubMed |
description | The intestinal microbiota contributes to the development of the immune system, and conversely, the immune system influences the composition of the microbiota. Toll-like receptors (TLRs) in the gut recognize bacterial ligands. Although TLR signaling represents a major arm of the innate immune system, the extent to which TLRs influence the composition of the intestinal microbiota remains unclear. We performed deep 16S ribosomal RNA sequencing to characterize the complex bacterial populations inhabiting the ileum and cecum of TLR- and MyD88-deficient mice. The microbiota of MyD88- and TLR-deficient mouse colonies differed markedly, with each colony harboring distinct and distinguishable bacterial populations in the small and large intestine. Comparison of MyD88-, TLR2-, TLR4-, TLR5-, and TLR9-deficient mice and their respective wild-type (WT) littermates demonstrated that the impact of TLR deficiency on the composition of the intestinal microbiota is minimal under homeostatic conditions and after recovery from antibiotic treatment. Thus, differences between TLR-deficient mouse colonies reflected long-term divergence of the microbiota after extended husbandry in isolation from each other. Long-term breeding of isolated mouse colonies results in changes of the intestinal microbiota that are communicated to offspring by maternal transmission, which account for marked compositional differences between WT and mutant mouse strains. |
format | Online Article Text |
id | pubmed-3409501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-34095012013-01-30 Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice Ubeda, Carles Lipuma, Lauren Gobourne, Asia Viale, Agnes Leiner, Ingrid Equinda, Michele Khanin, Raya Pamer, Eric G. J Exp Med Article The intestinal microbiota contributes to the development of the immune system, and conversely, the immune system influences the composition of the microbiota. Toll-like receptors (TLRs) in the gut recognize bacterial ligands. Although TLR signaling represents a major arm of the innate immune system, the extent to which TLRs influence the composition of the intestinal microbiota remains unclear. We performed deep 16S ribosomal RNA sequencing to characterize the complex bacterial populations inhabiting the ileum and cecum of TLR- and MyD88-deficient mice. The microbiota of MyD88- and TLR-deficient mouse colonies differed markedly, with each colony harboring distinct and distinguishable bacterial populations in the small and large intestine. Comparison of MyD88-, TLR2-, TLR4-, TLR5-, and TLR9-deficient mice and their respective wild-type (WT) littermates demonstrated that the impact of TLR deficiency on the composition of the intestinal microbiota is minimal under homeostatic conditions and after recovery from antibiotic treatment. Thus, differences between TLR-deficient mouse colonies reflected long-term divergence of the microbiota after extended husbandry in isolation from each other. Long-term breeding of isolated mouse colonies results in changes of the intestinal microbiota that are communicated to offspring by maternal transmission, which account for marked compositional differences between WT and mutant mouse strains. The Rockefeller University Press 2012-07-30 /pmc/articles/PMC3409501/ /pubmed/22826298 http://dx.doi.org/10.1084/jem.20120504 Text en © 2012 Ubeda et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Article Ubeda, Carles Lipuma, Lauren Gobourne, Asia Viale, Agnes Leiner, Ingrid Equinda, Michele Khanin, Raya Pamer, Eric G. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice |
title | Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice |
title_full | Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice |
title_fullStr | Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice |
title_full_unstemmed | Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice |
title_short | Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice |
title_sort | familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of tlr-deficient mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409501/ https://www.ncbi.nlm.nih.gov/pubmed/22826298 http://dx.doi.org/10.1084/jem.20120504 |
work_keys_str_mv | AT ubedacarles familialtransmissionratherthandefectiveinnateimmunityshapesthedistinctintestinalmicrobiotaoftlrdeficientmice AT lipumalauren familialtransmissionratherthandefectiveinnateimmunityshapesthedistinctintestinalmicrobiotaoftlrdeficientmice AT gobourneasia familialtransmissionratherthandefectiveinnateimmunityshapesthedistinctintestinalmicrobiotaoftlrdeficientmice AT vialeagnes familialtransmissionratherthandefectiveinnateimmunityshapesthedistinctintestinalmicrobiotaoftlrdeficientmice AT leineringrid familialtransmissionratherthandefectiveinnateimmunityshapesthedistinctintestinalmicrobiotaoftlrdeficientmice AT equindamichele familialtransmissionratherthandefectiveinnateimmunityshapesthedistinctintestinalmicrobiotaoftlrdeficientmice AT khaninraya familialtransmissionratherthandefectiveinnateimmunityshapesthedistinctintestinalmicrobiotaoftlrdeficientmice AT pamerericg familialtransmissionratherthandefectiveinnateimmunityshapesthedistinctintestinalmicrobiotaoftlrdeficientmice |