Cargando…
Animated Graphics for Comparing Two Risks: A Cautionary Tale
BACKGROUND: The increasing use of computer-administered risk communications affords the potential to replace static risk graphics with animations that use motion cues to reinforce key risk messages. Research on the use of animated graphics, however, has yielded mixed findings, and little research ex...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Gunther Eysenbach
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409597/ https://www.ncbi.nlm.nih.gov/pubmed/22832208 http://dx.doi.org/10.2196/jmir.2030 |
Sumario: | BACKGROUND: The increasing use of computer-administered risk communications affords the potential to replace static risk graphics with animations that use motion cues to reinforce key risk messages. Research on the use of animated graphics, however, has yielded mixed findings, and little research exists to identify the specific animations that might improve risk knowledge and patients’ decision making. OBJECTIVE: To test whether viewing animated forms of standard pictograph (icon array) risk graphics displaying risks of side effects would improve people’s ability to select the treatment with the lowest risk profile, as compared with viewing static images of the same risks. METHODS: A total of 4198 members of a demographically diverse Internet panel read a scenario about two hypothetical treatments for thyroid cancer. Each treatment was described as equally effective but varied in side effects (with one option slightly better than the other). Participants were randomly assigned to receive all risk information in 1 of 10 pictograph formats in a quasi-factorial design. We compared a control condition of static grouped icons with a static scattered icon display and with 8 Flash-based animated versions that incorporated different combinations of (1) building the risk 1 icon at a time, (2) having scattered risk icons settle into a group, or (3) having scattered risk icons shuffle themselves (either automatically or by user control). We assessed participants’ ability to choose the better treatment (choice accuracy), their gist knowledge of side effects (knowledge accuracy), and their graph evaluation ratings, controlling for subjective numeracy and need for cognition. RESULTS: When compared against static grouped-icon arrays, no animations significantly improved any outcomes, and most showed significant performance degradations. However, participants who received animations of grouped icons in which at-risk icons appeared 1 at a time performed as well on all outcomes as the static grouped-icon control group. Displays with scattered icons (static or animated) performed particularly poorly unless they included the settle animation that allowed users to view event icons grouped. CONCLUSIONS: Many combinations of animation, especially those with scattered icons that shuffle randomly, appear to inhibit knowledge accuracy in this context. Static pictographs that group risk icons, however, perform very well on measures of knowledge and choice accuracy. These findings parallel recent evidence in other data communication contexts that less can be more—that is, that simpler, more focused information presentation can result in improved understanding. Decision aid designers and health educators should proceed with caution when considering the use of animated risk graphics to compare two risks, given that evidence-based, static risk graphics appear optimal. |
---|