Cargando…
Light scattering from edematous human corneal grafts’ microstructure: experimental study and electromagnetic modelization
Along with the lens, the cornea is the only transparent tissue in the human body. However, the development of an edema involves structural disturbances increasing light scattering and leading to the opacification of the cornea. Several mechanisms of transparency loss have been studied in the literat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409700/ https://www.ncbi.nlm.nih.gov/pubmed/22876345 http://dx.doi.org/10.1364/BOE.3.001793 |
Sumario: | Along with the lens, the cornea is the only transparent tissue in the human body. However, the development of an edema involves structural disturbances increasing light scattering and leading to the opacification of the cornea. Several mechanisms of transparency loss have been studied in the literature, but the whole phenomenon is complex and the part played by each scatterer is still unclear. We propose here to study human corneal grafts combining microscopic OCT imagery with far-field measurement of the scattered light in the reflected half-space. We introduce afterwards numerical calculations based on electromagnetic equations solved with first order approximation to link the observed microscopic-scale structural modifications with the intensity level of the scattered light, and to try and quantify the relationship between them. |
---|