Cargando…
SNP Selection in Genome-Wide and Candidate Gene Studies via Penalized Logistic Regression
Penalized regression methods offer an attractive alternative to single marker testing in genetic association analysis. Penalized regression methods shrink down to zero the coefficient of markers that have little apparent effect on the trait of interest, resulting in a parsimonious subset of what we...
Autores principales: | Ayers, Kristin L, Cordell, Heather J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410531/ https://www.ncbi.nlm.nih.gov/pubmed/21104890 http://dx.doi.org/10.1002/gepi.20543 |
Ejemplares similares
-
Identification of Grouped Rare and Common Variants via Penalized Logistic Regression
por: Ayers, Kristin L, et al.
Publicado: (2013) -
Analysis of Genetic Analysis Workshop 18 data with gene-based penalized regression
por: Ayers, Kristin L, et al.
Publicado: (2014) -
Using penalized regression to predict phenotype from SNP data
por: Cherlin, Svetlana, et al.
Publicado: (2018) -
Penalized-regression-based multimarker genotype analysis of Genetic Analysis Workshop 17 data
por: Ayers, Kristin L, et al.
Publicado: (2011) -
Analysis of North American Rheumatoid Arthritis Consortium data using a penalized logistic regression approach
por: Croiseau, Pascal, et al.
Publicado: (2009)